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Abstract— In this supplementary document, we first show
the shape variations of the adopted PCA model in Sec. I.
In Sec. II, the full derivations of the analytical Jacobians of
all the residuals defined in the main paper are presented.
Lastly in Sec. III, we show more results on the KITTI dataset,
which qualitatively demonstrate the ability of our method to
recover the 3D poses and shapes of cars in challenging real-
world environments. Apart from this document, a video showing
how our method works on some selected stereo frames can be
found on the project page https://vision.in.tum.de/
research/vslam/direct-shape.

I. SHAPE VARIATIONS OF PCA MODEL

To demonstrate that our PCA model can deform and fit
properly to a variety of car shapes, we first fit it to 12
selected vehicles from the CAD samples which we used to
extract the PCA model. The shapes together with the color
coded signed distance function (SDF) are shown in Fig. 1.
An animation showing the different car shapes by modifying
the shape coefficients z can be found on the project page.
We further show some real-world examples in Fig. 2, where
the PCA model is optimized using our approach to fit the
corresponding cars in the second row. We claim that although
the adopted PCA shape embedding is a simple linear model,
it works nicely for object categories like cars.

II. FULL DERIVATIONS OF JACOBIANS

A. Jacobian of Silhouette Alignment Residual

As the relative transformation between the left and right
cameras are considered to be fixed in this work, the Jacobians
of rlsilh and rrsilh are the same and we will omit the
superscript in the following. As shown in Eq. 2 in the main
paper, the silhouette alignment residual of pixel p is defined
as

rsilh(p) = −log
(
π(Φ,p)pfg(p) + (1− π(Φ,p))pbg(p)︸ ︷︷ ︸

:=A(π)

)
,

(1)
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thus using chain rule its Jacobian with respect to the pose
and shape parameters [ξoc ; z] can be factorized to

Jsilh =
∂rsilh(p)

∂[ξoc ; z]
(2)

= −∂log(A(π))

∂A(π)

∂A(π)

∂π

∂π(Φ,p)

∂Φ

∂Φ

∂[ξoc ; z]
, (3)

where

∂log(A(π))

∂A(π)
=

1

A(π)
, (4)

∂A(π)

∂π
= pfg(p)− pbg(p). (5)

Recall that the shape embedding projection function π(Φ,p)
is defined as

π(Φ,p) = 1−
∏
Xo

1

eΦ(Xo)ζ + 1
, (6)

to make it easier to derive its Jacobian, we convert the
multiplications in π(Φ,p) to summations by reformulating
it to

π(Φ,p) = 1− exp
(∑

Xo

log
( :=C(Φ)︷ ︸︸ ︷

1

eΦ(Xo)ζ + 1

)
︸ ︷︷ ︸

:=B(Φ)

)
. (7)

Therefore,

∂π(Φ,p)

∂Φ
= −exp(B(Φ))

∑
Xo

1

C(Φ)

∂C(Φ)

∂Φ
, (8)

where

∂C(Φ)

∂Φ
=
∂( 1

eΦ(Xo)ζ+1
)

∂Φ
(9)

= (−1)
eΦ(Xo)ζ

(eΦ(Xo)ζ + 1)2
ζ (10)

= − ζeΦ(Xo)ζ

(eΦ(Xo)ζ + 1)2
. (11)

The remaining part to derive is ∂Φ(Xo)/∂[ξoc ; z]. As
Φ(Xo) = V(Xo)z + Φmean =

∑K
k=1 vk(Xo)zk + Φmean,

we have

∂Φ(Xo)

∂z
= [v1(Xo),v2(Xo), ...,vK(Xo)]. (12)
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Fig. 1: Shape variations of PCA model with color coded SDF.

Fig. 2: Qualitative results on the shape estimation.

To derive ∂Φ(Xo)/∂ξ
o
c , we first compute the coordinate for

Xo in the camera coordinate system as Xc, so we have
Xo = exp

(
ξ̂oc

)
Xc, where exp(̂·) is the exponential map

that maps the twist coordinate to SE(3). The remaining part
of the Jacobian is then computed as

∂Φ(Xo)

∂ξoc
= ∇Φ

∣∣∣∣
Xo

∂Xo

∂ξoc
, (13)

∂Xo

∂ξoc
=
∂exp

(
ξ̂oc

)
∂ξoc

∣∣∣∣
ξoc

Xc =
∂exp(δ̂ξ)

∂(δξ)

∣∣∣∣
0

exp(ξ̂oc)Xc, (14)

where ∇Φ is the spatial gradient of Φ, δξ is a small
increment in se(3) and is applied with the exponential map
to the left hand side of the pose estimate. The closed form
solution for ∂exp(δ̂ξ)/∂(δξ) near δξ = 0 can be obtained
using the infinitesimal generators of SE(3) (please refer
Eq. 44 and 45).

Depending on the derivations of the specific derivatives
above, the full Jacobian of the silhouette alignment residual
can be computed by combining Eq. 4, 5, 8, 11 and Eq. 12,
13, 14.

B. Jacobian of the Photometric Consistency Residual

As defined in the main paper, the photometric consistency
residual of pixel p is

rphoto(p) = Ir
(

Πc(R
r
lΠ
−1
c (p, dp) + trl )︸ ︷︷ ︸

:=warp(p,dp)

)
− Il

(
p
)
, (15)

where the pose and shape parameters [ξoc ; z] only appear in
dp. Using chain rule the Jacobian with respect to the pose
and shape parameters can be factorized to

Jphoto =
∂rphoto(p)

∂[ξoc ; z]
(16)

= ∇Ir(warp(p, dp))
∂warp(p, dp)

∂dp

∂dp

∂[ξoc ; z]
, (17)

where warp(p, dp) = Πc(R
r
lΠ
−1
c (p, dp) + trl ) is the pixel

warping function from the left image to the right image,
∇Ir(warp(p, dp)) is the image gradient of the right image
at the warped pixel location warp(p, dp). In the following
we derive ∂warp(p, dp)/∂dp and ∂dp/∂[ξoc ; z] successively.

Denoting the 3D coordinates of p in the left and the right



camera coordinate systems as Xl and Xr, we have

warp(p, dp) = Πc(R
r
l

Xl︷ ︸︸ ︷
Π−1c (p, dp) +trl︸ ︷︷ ︸

Xr

), (18)

Xl = dpK−1[p(u),p(v), 1]>, (19)

Xr = Rr
lXl + trl , (20)

= dp Rr
lK
−1[p(u),p(v), 1]>︸ ︷︷ ︸

:=v=[v(x),v(y),v(z)]>

+trl , (21)

= dpv + trl , (22)

Πc(Xr) =

[
fu 0 cu
0 fv cv

]
Xr(x)
Xr(z)
Xr(y)
Xr(z)

1

 (23)

=

[
fu

Xr(x)
Xr(z)

+ cu

fv
Xr(y)
Xr(z)

+ cv,

]
, (24)

where K = [fu, 0, cu; 0, fv, cv; 0, 0, 1] is the camera intrinsic
matrix. ∂warp(p, dp)/∂dp therefore can be computed as

∂warp(p, dp)

∂dp
=

fu ∂Xr(x)
Xr(z)

dp

fv
∂

Xr(y)
Xr(z)

dp

 (25)

=

fu
∂Xr(x)
∂dp

Xr(z)−Xr(x)
∂Xr(z)
∂dp

X2
r(z)

fv
∂Xr(y)
∂dp

Xr(z)−Xr(y)
∂Xr(z)
∂dp

X2
r(z)

 (26)

=

[
fu

v(x)Xr(z)−Xr(x)v(z)
X2
r(z)

fv
v(y)Xr(z)−Xr(y)v(z)

X2
r(z)

]
. (27)

To compute ∂dp/∂[ξoc ; z], we first compute the 3D coor-
dinate of the intersecting point of the ray and the zero-level
surface based on dp obtained by ray-casting, then transform
it from the camera coordinate system to the object coordinate
system and denote it as Xd

o. The Jacobian with respect to the
shape encoding vector is then computed as

∂dp

∂z
=
∂dp

∂Φ

∣∣∣∣
Φ(Xd

o)

∂Φ

∂z

∣∣∣∣
z

, (28)

where ∂Φ/∂z can be computed similarly as in Eq. 12,
the derivation of ∂dp/∂Φ is illustrated in Fig. 3. At the
intersecting point Xd

o, the change of the depth along the
ray ∂d is approximately proportional to the change of the
SDF value δΦ by a factor of 1/cos(θ) where θ is the angle
between the ray and the surface normal. Taking the sign into
account we have

∂dp

∂Φ

∣∣∣∣
Φ(Xd

o)

= − 1

cos(θ)
. (29)

The Jacobian with respect to ξoc can be factorized to

∂dp

∂ξoc
=
∂dp

∂Φ

∣∣∣∣
Φ(Xd

o)

∇Φ

∣∣∣∣
Xd
o

∂Xd
o

∂ξoc

∣∣∣∣
ξoc

, (30)

which can be computed according to Eq. 29 and 14.
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d
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Fig. 3: Deriving the Jacobian of the depth wrt. the SDF value.

C. Jacobian of Prior Residuals

Based on the energy terms defined in the Eq. 7-9 in the
main paper, we define the residuals of the priors on the shape
and pose parameters as

rishape =
zi
σi
, i = 1, 2, ...,K (31)

rtrans = tco(y)− g(tco(x, z))(y), (32)

rrot = 1− (Rc
o[0,−1, 0]>)>ng. (33)

1) Jacobian of Shape Prior Residuals.: Based on Eq. 31
we have

∂rishape
∂ξoc

= 0, (34)

∂rishape
∂z

= [0, ..., 0,
1

σi
, 0, ..., 0]. (35)

2) Jacobian of Translation Prior Residuals.: Denoting the
equation for the ground plane as ng(x)x+ng(y)y+ng(z)z+
d = 0 with ng the plane normal vector and d a constant, the
height of the ground plane at tco(x, z) is

g(tco(x, z))(y) = −ng(x)tco(x) + ng(z)t
c
o(z) + d

ng(y)
, (36)

thus

rtrans = tco(y) +
ng(x)tco(x) + ng(z)t

c
o(z) + d

ng(y)
. (37)

Its Jacobian with respect to ξoc then can be computed as

∂rtrans
∂ξoc

=
∂rtrans
∂tco

∂tco
∂ξoc

(38)

= [
ng(x)

ng(y)
, 1,

ng(z)

ng(y)
]
∂tco
∂ξoc

, (39)

where the last term can be computed as

∂tco
∂ξoc

=
∂Tc

o(0 : 2, 3)

∂ξoc
(40)

=
∂To

c
−1(0 : 2, 3)

∂ξoc
(41)

=
∂
(
(exp(δ̂ξ)To

c)
−1(0 : 2, 3)

)
∂(δξ)

(42)

=
∂
(
(Tc

oexp(−δ̂ξ))(0 : 2, 3)
)

∂(δξ)
(43)

=
(
Tc
o(−

∂exp(δ̂ξ)

∂(δξ)
)
)
(0 : 2, 3) (44)

= −[(Tc
oG0)(0 : 2, 3), (Tc

oG1)(0 : 2, 3), ..., (Tc
oG5)(0 : 2, 3)],

(45)

where we use (0 : 2, 3) to denote the operation of getting the
translation part from the corresponding matrix; G0, ...,G5



are the infinitesimal generators of SE(3). Assuming the first
three elements in the twist coordinate correspond to the
translation part and the last three correspond to the rotation
part, the infinitesimal generators are defined as

G0 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , (46)

G1 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , (47)

G2 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , (48)

G3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , (49)

G4 =


0 0 1 0
0 0 0 0
−1 0 0 0

0 0 0 0

 , (50)

G5 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 . (51)

Lastly, the Jacobian with respect to z is

∂rtrans
∂z

= 0. (52)

3) Jacobian of Rotation Prior Residuals.: The rotation
prior residual can be reformulated to

rrot = 1− (Rc
o[0,−1, 0]>)>ng (53)

= 1− [0,−1, 0]Rc
o
>ng (54)

= 1 + [0, 1, 0]Ro
cng (55)

= 1 + r2ng, (56)

where r1 is the second row of Ro
c . Therefore, the Jacobian

with respect to ξoc is

∂rrot
∂ξoc

=
∂r1
∂ξoc

ng (57)

=
∂To

c(1, 0 : 2)

∂ξoc
ng (58)

= (
∂exp(δ̂ξ)

∂(δξ)
To
c)(1, 0 : 2)ng (59)

= [(G0T
o
c)(1, 0 : 2), ..., (G5T

o
c)(1, 0 : 2)]ng, (60)

where (1, 0 : 2) denotes the operation of getting the part
corresponding to the second row of the rotation matrix.
Lastly, we have

∂rrot
∂z

= 0. (61)

III. MORE QUALITATIVE RESULTS

In Fig. 4 we qualitatively show the refinements on 3D
pose and shape delivered by our method. The results on each
stereo image pair are shown in each two-row block. In the
first row we show the initial pose and shape estimates and our
results projected onto the left image. In the second row, the
initial pose (3DOP) and the estimated pose by our method
are shown in the first two images, together with the ground
truth 3D point cloud. In the following three images, the 3D
point cloud estimated by ELAS and by our method, as well
as the ground truth are shown, respectively. As shown in
the results, dense stereo matching results become extremely
noisy on the strong non-lambertian reflective car surfaces.
Our results avoid using such results for recovering the 3D
poses and shapes of cars, instead it works directly on images
by performing joint silhouette and photometric alignment.
While it drastically improves the 3D shape reconstruction, it
can also effectively recover the 3D poses of the objects.

More qualitative results are listed in Fig. 5 and 6, where
the input images are shown on the left and our results
overlaid to the input images are shown on the right.



Fig. 4: Qualitative results on 3D pose and shape refinements. Each two-row block shows the results on one stereo frame
from the KITTI Stereo 2015 benchmark. Top row: The initial pose and shape (left) and our results (right) projected to the
left image. Bottom row: The initial poses estimated by 3DOP and the poses refined by our method shown together with the
ground truth 3D point cloud (1st and 2nd); The following three images show the 3D points estimated by ELAS (middle),
our method (4th) and from the ground truth (last). Note that the 3D point clouds are not used in our optimization. (better
viewed electronically)



Fig. 5: Qualitative results on 3D pose and shape estimation.



Fig. 6: Qualitative results on 3D pose and shape estimation (cont.).


