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Abstract

We present a generative approach to model-based motion segmentation by incorporating a statistical shape prior into a novel variational

segmentation method. The shape prior statistically encodes a training set of object outlines presented in advance during a training phase.

In a region competition manner the proposed variational approach maximizes the homogeneity of the motion vector field estimated on a set

of regions, thus evolving the separating discontinuity set. Due to the shape prior, this discontinuity set is not only sensitive to motion

boundaries but also favors shapes according to the statistical shape knowledge.

In numerical examples we verify several properties of the proposed approach: for objects which cannot be easily discriminated from the

background by their appearance, the desired motion segmentation is obtained, although the corresponding segmentation based on image

intensities fails. The region-based formulation facilitates convergence of the contour from its initialization over fairly large distances, and the

estimated flow field is progressively improved during the gradient descent minimization. Due to the shape prior, partial occlusions of the

moving object by ‘unfamiliar’ objects are ignored, and the evolution of the motion boundary is effectively restricted to the subspace of

familiar shapes.
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1. Introduction

The variational approach to image segmentation pro-

posed by Mumford and Shah [19] consists in approximating

an input image f on the image plane V by a piecewise

smooth function u, which may be discontinuous across a

boundary C. This approximation is obtained by minimizing

the following energy functional

Eðu;CÞ ¼
1

2

ð
V
ðf 2 uÞ2dx þ l2 1

2

ð
V2C

l7ul2dx

þ nLðCÞ; ð1Þ

with respect to both the contour C and the segmenting image

u. The length of this boundary is commonly implemented as

LðCÞ ¼
ð1

0

dCðsÞ

ds

����
����ds: ð2Þ

By further increasing the weight of the smoothness

constraint (l!1), one approaches the so-called cartoon

limit, in which the input image f is approximated by a

piecewise constant function uðxÞ ¼ {ui; if x [ Ri , V}

Eðu;CÞ ¼
X

i

ð
Ri

ðf 2 uiÞ
2dx þ nLðCÞ: ð3Þ

The contour then partitions the image plane into a set of

pairwise disjoint regions Ri; with ui taking on the mean grey

value of f over the region Ri:

In Refs. [7,9] we proposed modifications of the two

functionals in Eqs. (1) and (3) which permitted to implement

the segmenting contour as a closed quadratic B-spline

curve. These so-called diffusion snakes are a hybrid model

with the external energy of the Mumford–Shah functional

and the internal energy of the snakes [15]. We then proposed

to extend this functional by introducing a statistical prior on

the shape of the segmenting contour in a combined

variational approach. For this purpose we estimated the

distribution of spline control points associated with a set of

binary training objects. Numerical results showed that the

additional shape energy can improve segmentation results in

case of noise, clutter or occlusion.

In the present paper, we propose to modify the functional

(3) so that it measures the inhomogeneity not with respect to

the image intensities, but rather with respect to a motion
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hypothesis. As we will show, this provides an elegant way to

jointly solve the problems of motion estimation and image

segmentation. Just as in the case of the corresponding grey

value segmentation, an additional shape energy effectively

restricts the contour evolution to the subspace of familiar

contours induced by the statistical shape model. This can

improve segmentation of a known object in cases of missing

or misleading motion information, which may arise for

example due to partial occlusions or due to missing grey

value structure.

1.1. Related work

Discontinuity-preserving motion estimation by vari-

ational models and related partial differential equations

have a long tradition in computer vision research [2,17,18,

20,25,26]. These approaches are non-generative in that they

purely work in a data-driven way. Moreover, they generally

model the motion discontinuities implicitly in terms of

appropriate (non-quadratic) regularizers.

There exist some variational approaches with explicit

discontinuities for grey value segmentation [19] and

extensions to color and texture segmentation [27]. The

functional (1) has been adapted to the problem of motion

segmentation in Ref. [20], however, there the author prefers

an implicit model of the discontinuity by reverting to

approximations in terms of G-convergence as studied in Ref.

[1].

Though not derived by minimizing a single energy

functional, the approaches in Refs. [12,24] provide similar

dynamics by combining variational motion estimation on

disjoint sets with a shape optimization procedure. However,

like the above approaches the latter approaches do not

exploit prior knowledge.

Prior knowledge in terms of motion models was

incorporated in motion estimation and motion segmentation

by Odobez and Bouthemy [21,22]. In contrast to this

approach, we focus on prior knowledge with respect to

shape and thus directly address the problem of determining

accurate motion boundaries in a generative way. Deform-

able shape models were combined with motion segmenta-

tion in Ref. [16]. However, there the authors do not pursue a

variational integration of motion segmentation and shape

prior, they work in the subspace of a small number of model

parameters which are optimized by simulated annealing.

This restriction to a few model parameters does not permit a

direct comparison to segmentation results without the

statistical prior.

Concerning the representation of shape, we are well

aware of the advantages of level set based approaches [4,23]

. From the statistical learning perspective, however,

the additional dimension introduced by the implicit

representation of shape as level sets is a serious drawback.

Furthermore, in many applications it is known that

topological changes of shapes do not occur.

2. The generative model

2.1. Variational integration of motion information and

shape prior

The proposed variational combination of shape statistics

and motion information consists in minimizing an energy

which is the weighted sum of a motion energy Em and a

shape energy Ec

EðCðzÞÞ ¼ Emðw;CðzÞÞ þ aEcðzÞ; ð4Þ

with respect to the parameters z defining a closed spline

curve C and the motion vectors w ¼ {wi} which estimate

the motion in the regions Ri separated by the contour. The

motion energy measures the inhomogeneity of motion in the

regions separated by the contour, and the shape energy

measures the dissimilarity of a given contour with respect to

a set of training shapes. Both terms will be detailed in

Sections 2.2 and 2.3.

Our approach differs from most shape-model based

segmentation approaches. We do not enforce a hard

restriction of the evolving contour to the subspace of

familiar shape deformations, for example by working only

with the parameters associated with the principal modes

of a principal component analysis. Instead, we embed the

shape prior EcðzÞ as a soft constraint defined (and

differentiable) on the full space of possible spline curves,

as will be detailed below. This approach has a number of

favorable properties:

First, it allows a direct comparison of contour evolutions

with and without the prior, because the prior can be switched

off by a single parameter a:

Secondly, the prior can be switched on during a

contour evolution without further modifications. This

enables an encoding of very different object classes in a

single shape prior [7]: The contour is first evolved

without the prior until stationarity and after switching on

the prior, the evolution favors the most appropriate object

class.

Thirdly, we believe that the soft constraint is more

faithful from a probabilistic point of view: Given only a

small number of training samples in the learning set, a shape

deformation orthogonal to the observed ones should not be

assigned a probability of zero (or, equivalently, an infinite

energy), as done in the case of the hard constraint.

2.2. Variational motion segmentation

The Mumford–Shah approach (3) aims at maximizing a

homogeneity criterion with respect to the grey value on a set

of regions Ri which are separated by a contour C. We now

propose to maximize the homogeneity not with respect to

the grey value but rather with respect to the estimated

motion.

Let f ðx; tÞ be an image sequence which is assumed to be

differentiable. Assuming that the intensity of a moving point
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is constant throughout time, we obtain a continuity equation

given by the classical optic flow constraint:

d

dt
f ðx; tÞ ¼

›

›t
f þ wt7f ¼ 0;

where w ¼ dx=dt denotes the local velocity. Given two

consecutive images f1 and f2 from this sequence, we

approximate ›f =›t < ðf2 2 f1Þ and 7f < 7ðf1 þ f2Þ=2:

We propose to segment the image into areas Ri of

piecewise constant motion wi by minimizing the energy

functional

Emðw;CÞ ¼
X

i

ð
Ri

f2 2 f1 þ
wt

i

2
7ðf1 þ f2Þ

� �2

dx þ nLðCÞ;

ð5Þ

simultaneously with respect to both the contour C and the

motion vectors wi: The proposed motion energy (5) can be

interpreted as an extension of the Mumford–Shah cartoon

limit (3) to the problem of motion segmentation.

With the extended velocity vector

v ¼
w

1

 !
;

and the spatio-temporal structure tensor

S ¼ ð73f Þð73f Þt; with 73f ¼

7f

›

›t
f

0
B@

1
CA; ð6Þ

the energy (5) can be rewritten as

Emðw;CÞ ¼
X

i

ð
Ri

ðvt
iSviÞdx þ nLðCÞ: ð7Þ

In practice, the proposed homogeneity term—i.e. the first

term in Eq. (7)—shows a bias towards velocity vectors of

large magnitude. As proposed in Ref. [11], we therefore

perform an isotropy compensation of the structure tensor by

replacing

S ! S 2 l3I; ð8Þ

where l3 is the smallest eigenvalue of S and I is the 3 £ 3

unit matrix. This modification removes a term propor-

tional to lvil
2

from the cost functional (7) and thereby

decreases the bias towards areas of large magnitude of the

velocity vector. For a more detailed exposition we refer to

Ref. [11].

2.3. Motion competition

Minimization of Eq. (7) with respect to the velocities

w ¼ {wi} results in the equations

dEm

dwi

¼ 2�Siwi þ 2bi ¼ 0; ð9Þ

with

�Si ¼
ð

Ri

S11 S12

S21 S22

 !
dx and bi ¼

ð
Ri

S13

S23

 !
dx: ð10Þ

The solution of Eq. (9) is given by

wi ¼ 2�S21
i bi: ð11Þ

If the matrix �Si is not invertible, we revert to the pseudo-

inverse in order to choose the solution of smallest

magnitude.

Using Green’s theorem, minimization of Eq. (7) with

respect to the contour C results in the evolution equation

dC

dt
¼ ðe2 2 eþÞn 2 nkcn: ð12Þ

The superscripts j ¼ þ=2 denote the two regions to the left

and to the right of the respective contour point (in the sense

of the contour parameterization). They compete for the

contour in terms of the associated energy densities

ej ¼ vt
jSvj: ð13Þ

The curvature of the contour is denoted by kc; and n is the

normal on the contour pointing out of the region Rþ:

The two forces in Eq. (12) which drive the contour

evolution have the following intuitive interpretation: The

first one enforces regions of homogeneous optic flow, thus

separating regions moving at different velocities wj;

whereas the second term enforces a smoothing of the

separating contour by minimizing its curvature.

Since the two regions adjacent to the respective contour

point compete in terms of their energy densities eþ and e2;

we refer to this process as motion competition.

Note that in the equivalent paradigm of Bayesian

inference, these energy densities can also be interpreted as

the negative log likelihoods associated with the probability

that a given location belongs to one or the other motion

hypothesis.

For comparing different motion hypotheses, it is

suggested in Ref. [11] to normalize the cost function in

Eq. (13) by replacing

vt
jSvj !

vt
jSvj

kvjk
2
trðSÞ

: ð14Þ

Although this modification is not strictly derived by

minimizing energy (7), it tends to slightly improve the

contour evolution.

2.4. Statistical shape energy

In the following we will restrict the space of possible

motion contours to closed spline-curves of the form

C : ½0; 1�!V; CðsÞ ¼
XN
n¼1

pnBnðsÞ; ð15Þ
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with spline control points pn ¼ ðxn; ynÞ
t and periodic

quadratic basis functions Bn [3,10]. This facilitates the

incorporation of a statistical shape prior on the control point

vector z ¼ ðx1; y1;…; xN ; yNÞ
t:

In order to prevent a (numerically undesirable) clustering

of spline control points during the contour evolution we

propose [9] to replace the usual contour length (2) by

LðCÞ U
ð1

0

dC

ds

� �2

ds: ð16Þ

In fact, the Euler–Lagrange equation corresponding to the

functional (16) is equivalent to an equidistant spacing of

control points in the case of quadratic B-spline basis functions

d2CðsÞ

ds2
¼ 0 ;s , pi ¼

pi21 þ piþ1

2
;i:

Due to the modified length measure (16), the curvature

term ðkcnÞ in the evolution equation (12) is replaced by

d2C=ds2:

The explicit parameterization of the contour (15)

allows to represent a set of sample shapes in a vector

space and to approximate their distribution statistically.

To this end, the images of training objects are binarized, a

spline contour is fitted to the boundary and the set of

training contours is aligned with respect to similarity

transformations [13] and cyclic permutation of the control

points p1;…; pN :

The distribution of control point vectors z [ R2N is

assumed to be Gaussian

PðzÞ / exp 2 1
2
ðz 2 z0Þ

tS21ðz 2 z0Þ
� �

: ð17Þ

The mean control point vector z0 and sample covariance

matrix S are determined from the training set.

If the dimension of the subspace spanned by the

training vectors is smaller than the dimension 2N of the

underlying vector space, the sample covariance matrix S

will not have full rank. The associated Gaussian

probability will vanish for any shape outside the spanned

subspace.

As discussed in Ref. [9], we therefore define a probability

density which is continuous and differentiable in the full

2N-dimensional space by regularizing the covariance matrix

S’ ¼ Sþ s’ðI 2 VV tÞ;

where V is the matrix of eigenvectors of S corresponding to

non-zero eigenvalues, and s’ [ ð0;sr� is a regularizing

constant, sr being the smallest non-zero eigenvalue of S:

This regularization corresponds to replacing the

zero eigenvalues by a constant value which we fixed to s’ ¼

0:5sr in all numerical studies.

The negative logarithm of the probability (17) can be

interpreted as a shape energy of Mahalanobis type

EcðzÞ ¼
1
2
ðz 2 z0Þ

tS21
’ ðz 2 z0Þ: ð18Þ

3. Parameter estimation

3.1. Gradient descent evolution

To obtain a variational approach which maximizes both

the homogeneity of motion inside and outside the contour

and the similarity of the contour to a set of training shapes,

we propose to minimize the total energy (4) with respect to

the spline control point vector z and the motion vectors

w ¼ {wi}:

Eq. (12) can be converted to an evolution equation for the

spline control points by inserting the definition (15) of the

contour as a spline curve. Then the equation is discretized

with a set of nodes si along the contour, where si is chosen as

the point where the spline basis function Bi attains its

maximum. Including the contribution of the shape energy

(18), we obtain the evolution of control point m

dxmðtÞ

dt
¼
X

k

ðB21Þmk½ðe
þðsk; tÞ2 e2ðsk; tÞÞnxðsk; tÞ

þ n ðxk21 2 2xk þ xkþ1Þ�2 a½S21
’ ðz 2 z0Þ�2m21;

ð19Þ

dymðtÞ

dt
¼
X

k

ðB21Þmk½ðe
þðsk; tÞ2 e2ðsk; tÞÞnyðsk; tÞ

þ n ðyk21 2 2yk þ ykþ1Þ�2 a½S21
’ ðz 2 z0Þ�2m:

Here nx and ny denote the x- and y-coordinate of the normal

vector and the indices 2m 2 1 and 2m refer to the respective

component of the given vector which is associated with the

x- and y-coordinate of control point m. The cyclic

tridiagonal matrix B contains the spline basis functions

evaluated at the nodes: Bij ¼ BiðsjÞ:The three terms in Eq.

(19) can be interpreted as follows:

† The first term forces the contour towards the boundaries

of the two motion fields by minimizing the inhomogen-

eity which is measured by the energy density (13) with

the normalization (8) and (14). It is this term which

causes the contour to separate differently moving

regions.

† The second term enforces an equidistant spacing of

control points, thus minimizing the length measure in

Eq. (16).

† The third term is induced by the shape energy (18). It

causes a relaxation towards the most probable shape.

This relaxation is weighted by the inverse of the

regularized covariance matrix, such that less familiar

shape deformations will decay faster.

Given two consecutive images of a motion sequence,

we minimize the total energy (4) by iterating the contour

evolution equation (19) in alternation with an update of

the motion estimation (11) in the neighboring regions.
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3.2. Variational integration of similarity invariance

In most applications it is desirable to measure shape

dissimilarity only up to certain group transformations. In

Ref. [9] we presented a closed-form solution for

incorporating such invariances into the variational

approach (18).

To incorporate similarity invariance, the training

shapes are simultaneously aligned with respect to

translation, scaling, rotation [5,13] and cyclic permu-

tation of the control points. The remaining shape

variability is approximately encoded by mean and

covariance matrix. The final shape energy is then

obtained by applying the statistical energy (18) to the

argument after alignment of the respective contour with

respect to the mean shape z0

EshapeðzÞ ¼ Ec

Rðz 2 zcÞ

lRðz 2 zcÞl

� �
; ð20Þ

where zc denotes the center and R is the optimal

(Procrustes) rotation of the centered shape with respect

to the mean z0: As shown in Ref. [9], the resulting

expression equation (20) can be differentiated with

respect to the control point vector z. The last term in

the gradient descent (19) is then replaced by the gradient

of the total energy (20). For details, we refer to Ref. [9].

This incorporates similarity invariance on the basis of

the control point polygons without any additional

parameters to encode rotation angle, scale and translation.

In contrast, a minimization of explicit pose parameters

requires the balancing of associated gradient descent

equations. In an experimental comparison, we found that

this may introduce local minima and can have a negative

effect on convergence and stability of the numerical

implementation.

4. Experimental results

4.1. Intensity-based versus motion-based segmentation

The first example shows an artificial sequence of an apple

which is translated, with the background translated at a

different velocity and in a different direction. This can be

considered a simplified analogue with the case of a moving

object and a moving camera. Fig. 1 shows the initial

contour, the final contour and the final flow field estimation.

The latter shows the two different motion fields which were

estimated—namely two segments of motion with different

magnitude and different direction.

Although derived from a grey value segmentation

approach, the proposed motion segmentation is substan-

tially different from grey value segmentation in that it

segments the image plane into regions of constant motion

rather than constant grey value. Segmenting the previous

example of the apple sequence based on grey value

constancy would entirely fail as can be seen from the

corresponding binarized image in Fig. 1, right side: About

half of the apple has disappeared although the background

structure is still quite prominent.

The completely different properties of grey value and

motion segmentation are demonstrated in Fig. 2. A rabbit is

moving with respect to the background. Due to the difficult

lighting conditions in this example, the image grey value is

not a good cue for segmentation and therefore segmentation

based on grey value constancy fails—see Fig. 2, right

image. The segmentation based on motion constancy (with

the same initialization) gives a better result—see Fig. 2,

second to last image.

4.2. Convergence over large distances

The example of the rabbit in Fig. 2 shows a central

property of our approach: Since it is a region-based rather

than an edge-based approach, the colour tends to converge

over fairly large distances. This aspect is shown in the

example of a moving bus in an otherwise static scene in Fig. 3.

During the gradient descent minimization both the

contour and the estimate of the flow field are improved

simultaneously. The flow fields estimated for the initial and

the final contour are shown in the last two images of Fig. 3.

Note that the final estimate of the motion of the bus is

strongly improved compared to the initial one.

4.3. Moving background

A central difficulty in motion estimation is the

separation of differently moving regions. In many

Fig. 1. From left to right: initial and final contour for a motion segmentation of a moving apple and differently moving background, zoom of the estimated

motion field corresponding to the final contour, and a binarized version of the (first) input image.
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real-world applications, this problem arises for example

if a moving object is filmed by a differently moving

camera. Commonly the camera motion is eliminated by

determining the dominant motion in a robust estimation

framework first and then subtracting the latter [21,2].

However, the assumption that the moving background

fills the dominant part of the image plane may not

always be valid.2

Fig. 2. Motion segmentation versus grey value segmentation. Top: contour evolution for model (7) of piecewise homogeneous motion. Bottom: contour

evolution for model (3) of piecewise homogeneous intensity. Due to the lighting conditions, the image intensity is not a reliable cue for segmentation. The

discrepancy of the final motion contour at the left side of the head is partly due to the fact that the wallpaper is not sufficiently structured (compared to the

newspaper on the bottom right) to transmit the correct motion information. This fundamental limitation of motion estimation is commonly referred to as the

aperture problem. Moreover, in the first frame of the sequence (not shown here) the figure of the rabbit is further to the left.

Fig. 3. Convergence over large distances. Contour evolution for two images of a moving bus. The estimated flow field corresponding to the initial and final

contour are shown in a close-up. The estimated object motion is gradually improved during the contour evolution.

2 In Ref. [2], for example, it is stated that the robust estimation of the

background motion works well on an artificial sequence (involving

translatory motion only) if the background motion takes up at least 60%

of the image plane.
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The variational approach (7) does not rely on any

assumptions about the size of the segmented motion fields.

In fact, examples such as the moving bus sequence in Fig. 3

show that the object motion does not even have to fill the

dominant part of the initially enclosed area for the

minimization to converge correctly. This property arises

due to the fact that both the contour evolution equation (19)

and the motion estimation equation (11) were derived by

minimizing a single energy functional. It is in fact the non-

robust estimation of the motion inside and outside the

contour which defines the driving force for the contour via

the energy densities eþ and e2 in the evolution equation

(19). In the example in Fig. 3, a robust estimation of the

motion inside the initial contour would, on the contrary,

produce a zero velocity and the contour would not evolve

towards the bus.

The results in Fig. 4 shows that similar convergence

properties of our method can be observed if both the

object and the background are moving. In this example

from the Avengers’ sequence both the car and the

background are moving.3 The evolving contour and the

initial and final estimated piecewise homogeneous motion

fields show several properties of our method:

† The contour converges to the object of interest over a

fairly large distance.

† The final segmentation is fairly good despite large

(4–5 pixels in many areas) and non-translatory motion

of both object and background. The contour smooth-

ness compensates for missing motion information in

areas of weak grey value structure of the car and the

street.

† The initial contour does not need to be close to the

true motion boundary for the evolution to converge.

† The moving object does not need to fill the dominant part

of the region inside (or outside) the initial contour.

† The proposed variational method is fairly simple, it does

not require presmoothing or elaborate robust estimation.

The evolution from initial to final segmentation for the

example in Fig. 4 took less than 15 s on a 300 MHz SUN

Ultra 10. Real-time implementations are therefore

conceivable.

4.4. Effect of the Statistical Shape Prior

In cases of ambiguous motion information, e.g. due to

missing or misleading information, the proposed motion

segmentation may fail to converge to the correct result. If

the object of interest is known one may introduce some prior

knowledge into the segmentation approach.

In our example the object of interest is a moving hand. As

explained in Sections 2.4 and 3.2, a statistical shape energy

was derived from a set of 10 hand shapes, none of which is

identical with the hand in the image sequence.

We will demonstrate the effect of this shape prior on the

motion segmentation process by introducing a shape energy

in two different ways.

First we minimize the variational approach (4) without

any shape prior (a ¼ 0) until stationarity—see Fig. 5,

Fig. 4. Example from the Avengers sequence3 showing a moving car captured by a moving camera. Despite large (about 4–5 pixels in many areas) and not

purely translatory motion of both car and background, and despite the little grey value structure of car and street, the final segmentation is rather good. The

discrepancy between car and street is partly due to the shadow moving with the car. During the contour evolution, the estimated flow fields are progressively

separated, such that the final estimate (bottom right) clearly shows the motion of the car.

3 We thank P. Bouthemy and his group for providing us with the image

data from the Avengers sequence.
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fourth image. Then we determine the cyclical permu-

tation of spline control points which—given the optimal

similarity transformation—best aligns the present contour

with the mean of the training contours. Finally we switch

on the shape prior (a . 0) and minimize the total energy

(4) until convergence—see Fig. 5, eighth image.

The shape prior improves segmentation in areas where the

motion information is not strong enough to drive the seg-

mentation process—such as in the area between the fingers.

The estimated flow fields corresponding to the initial and

the final contour show that the energy minimization

separates the regions corresponding to different motion.

Fig. 5. Effect of the statistical shape prior. The hand is moving to the bottom left. The statistical shape prior is introduced upon stationarity of the contour

(middle row). Initial and final estimates of the flow field (bottom) show the improved separation of the two motion fields. The final segmentation is cut at the

wrist, because the training shapes were all cut at this location for simplicity.

Fig. 6. Motion segmentation with statistical shape prior. During the contour evolution (top row, from left to right) the motion estimates (bottom row) are

progressively updated.
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During the contour evolution the corresponding motion

estimation is gradually improved.

The evolution of the estimated flow field associated with

the contour evolution is shown in a second example in Fig. 6:

For the same sequence of the moving hand, we included the

statistical shape prior from the very beginning. The estimate

of the object motion progressively improves during the

contour evolution—see Fig. 6, bottom row. Note also that

due to the shape prior, the contour is strongly biased towards

the subspace of familiar contours throughout the evolution

process.

4.5. Dealing with occlusion

In the above sequence of a moving hand the motion

information by itself is not sufficiently strong to drive the

contour to the desired segmentation. In a final example, we

go one step further and artificially perturb the motion

information by occluding part of the moving hand with a

static structured object. Fig. 7 shows the initial and the final

contour obtained by minimizing the total energy (4) without

any shape prior (a ¼ 0). Note that the contour separates

moving from non-moving regions, given the constraint that

no splitting of the contour is permitted.

Fig. 8 shows a contour evolution obtained with a

statistical shape prior on the same sequence of a moving

hand occluded by a static bar. Due to the shape prior, the

occlusion is ignored although it is not in accordance with the

hand motion.

5. Current limitations and ongoing work

Encouraged by the results presented above, we intend to

tackle a number of limitations of the proposed approach for

variational motion segmentation. First, the linearization in

the optic flow constraint is only valid for small velocities wi:

If velocities are much larger than one pixel per frame, one

needs to refer to multi-scale implementations of the flow

estimation. Secondly, piecewise constant motion is

assumed. Currently [8] we pursue extensions to piecewise

affine motion fields in order to segment objects which are

rotating or changing in size upon motion orthogonal to the

camera plane. Thirdly, the optic flow calculation only works

for structured objects. Areas of constant grey value cannot

be assigned to one or the other motion hypothesis. This

aperture problem is well-known, the shape prior helps to

overcome it. Although the shape prior based on the

assumption of a Gaussian distribution works quite well in

Fig. 7. Motion segmentation without shape prior for a moving hand

occluded by a static object. Note that the contour separates moving and non-

moving regions. A contour splitting is not permitted.

Fig. 8. Motion segmentation with statistical shape prior for a moving hand occluded by a static object. Note that in this example it appears energetically

favorable for the contour to decrease in size during the first iteration steps (2nd and 3rd image). Compared to the segmentation without shape prior in Fig. 7,

right side, the effect of the occlusion is compensated by the statistical prior.
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practice, its applicability to more complex shape variations

and shapes of different classes is limited. Possible exten-

sions are shape statistics based on mixtures of Gaussians

[14,6] or a Gaussian in feature space [7].

6. Conclusion

We presented a modification of the Mumford–Shah

functional, which segments the image plane into domains of

piecewise homogeneous motion. In the manner of region

competition, a single functional is simultaneously minimized

with respect to the motion vectors in these regions and the

contour forming boundaries between the regions.

Numerical results show several properties of the

proposed approach: Due to the region-based formulation

the contour converges over fairly large distances in the

gradient descent minimization. Due to the interlaced

optimization of motion estimates and contour location, the

estimates of object and background motion are progress-

ively improved during the contour evolution.

The contour is implemented as a closed spline curve.

Although this limits the class of permissible contours, it

allows to incorporate a statistical prior on the shape of

expected motion boundaries. The spline control point

vectors of permissible shapes are assumed to form a

Gaussian distribution. Mean and covariance matrix of this

Gaussian are determined from a set of training images in a

fully unsupervised way. The shape statistics are integrated

in a combined variational approach in terms of a statistical

shape energy.

Numerical results show that the shape prior improves the

motion segmentation in several ways: It effectively reduces

the dimension of the search space by restricting the contour

motion to the subspace of learnt contours, it improves

convergence in cases where the motion information is not

sufficiently strong, and it permits reconstruction of occluded

motion.
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[12] G. Farnebäck, Very high accuracy velocity estimation using

orientation tensors, parametric motion, and segmentation of the

motion field, Proceedings of the 8th International Conference on

Computer Vision 1 (2001) 171–177.

[13] C. Goodall, Procrustes methods in the statistical analysis of shape,

J. Roy. Statist. Soc., Ser. B 53 (2) (1991) 285–339.

[14] T. Heap, D. Hogg, Improving specificity in pdms using a hierarchical

approach, Brit. Mach. Vis. Conf., Colchester, UK, 1997.

[15] M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models,

Int. J. Comput. Vis. 1 (4) (1988) 321–331.

[16] C. Kervrann, F. Heitz, Statistical deformable model-based segmenta-

tion of image motion, IEEE Trans. Image Process. 8 (1999) 583–588.

[17] P. Kornprobst, R. Deriche, G. Aubert, Image sequence analysis via

partial differential equations, J. Math. Image Vis. 11 (1) (1999) 5–26.
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