# Towards Illumination-invariant 3D Reconstruction using ToF RGB-D Cameras Supplementary Material 

Christian Kerl ${ }^{1}$, Mohamed Souiai ${ }^{1}$, Jürgen Sturm ${ }^{2}$, and Daniel Cremers ${ }^{1}$<br>${ }^{1}$ Technische Universität München, \{christian.kerı,mohamed.souiai,cremers\}@in.tum.de<br>${ }^{2}$ metaio GmbH , juergen.sturm@metaio.com

## 1. Introduction

The detailed procedure for solving problem $E\left(\mathcal{U}^{k}, \mathcal{S}\right)$ is illustrated in Algorithm 1. Note that the point-wise constraints in

```
Algorithm 1 Primal-Dual Solver for Sub-Problem \(\operatorname{argmin}_{\mathcal{U}} E\left(\mathcal{U}, \mathcal{S}^{k}\right)\)
Input: \(\mathcal{S}^{k}\)
Initialize \(\mathcal{U}^{0}\)
    for \(n=0,1,2, \ldots\) do
    \(\mathcal{P}(\boldsymbol{x})^{n+1}=\Pi_{1}\left[\mathcal{P}(\boldsymbol{x})^{n}+\tau \nabla \tilde{\mathcal{U}}(\boldsymbol{x})^{n}\right]\)
    \(\mathcal{U}(\boldsymbol{x})^{n+1}=\Pi_{2}\left[\mathcal{U}(\boldsymbol{x})^{n}-\sigma\left(\mathcal{S}(\boldsymbol{x})^{k}\left(\mathcal{C}(\boldsymbol{x})-\mathcal{S}(\boldsymbol{x})^{k} \mathcal{U}(\boldsymbol{x})^{n}\right)+\mathcal{G}(\boldsymbol{x})^{\top}\left(\mathcal{A}-\mathcal{G}(\boldsymbol{x}) \mathcal{U}(\boldsymbol{x})^{n}\right)-\nabla^{\top} \mathcal{P}(\boldsymbol{x})^{n+1}\right)\right]\)
    \(\tilde{\mathcal{U}}(\boldsymbol{x})^{n+1}=2 \mathcal{U}(\boldsymbol{x})^{n+1}+\mathcal{U}(\boldsymbol{x})^{n}\)
    end for
```

energy (23) are handled by orthogonal projectors $\Pi_{1}$ and $\Pi_{2}$ which reproject the primal and dual variables in the respective constraint sets by the following clipping operations:

$$
\begin{equation*}
\Pi_{1}(\mathcal{P}(\boldsymbol{x}))=\frac{\mathcal{P}(\boldsymbol{x})}{\max \{1,|\mathcal{P}(\boldsymbol{x})|\}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Pi_{2}(\mathcal{U}(\boldsymbol{x}))=\max \{0, \min \{\mathcal{U}(\boldsymbol{x}), 1\}\} \tag{2}
\end{equation*}
$$

The step sizes $\sigma$ and $\tau$ can be chosen according to [1]. Furthermore the inner optimization problem is performed point-wise. Hence the algorithm can be run in parallel for each pixel $\boldsymbol{x} \in \Omega$. The gradient operator $\nabla$ is a linear operator and the $\nabla^{\top}$ denotes its adjoint operator. Similarly the inner optimization problem $E\left(\mathcal{U}^{k}, \mathcal{S}\right)$ for a fixed $\mathcal{U}^{k}$ can be solved as in Algorithm 2. Where $\Pi_{3}$ is the orthogonal projector into the respective constraint sets i.e.:

$$
\begin{equation*}
\Pi_{3}(\mathcal{S}(\boldsymbol{x}))=\max \{0, \mathcal{S}(\boldsymbol{x})\} \tag{3}
\end{equation*}
$$

The gradient operator $\nabla$ used in Algorithm 1 is a linear operator which calculates the derivatives point-wise and can be written as follows:

$$
\nabla=\left[\begin{array}{ccc}
\nabla_{x} & &  \tag{4}\\
\nabla_{y} & & \\
& \nabla_{x} & \\
& \nabla_{y} & \\
& & \nabla_{x} \\
& & \nabla_{y}
\end{array}\right]
$$

```
Algorithm 2 Primal-Dual Solver for Sub-Problem \(\operatorname{argmin}_{\mathcal{S}} E\left(\mathcal{U}^{k}, \mathcal{S}\right)\)
Input: \(\mathcal{U}^{k}\)
Initialize \(\mathcal{S}^{0}\)
    for \(n=0,1,2, \ldots\) do
    \(\mathcal{Q}(\boldsymbol{x})^{n+1}=\Pi_{1}\left[\mathcal{Q}(\boldsymbol{x})^{n}+\tau \nabla \tilde{\mathcal{S}}(\boldsymbol{x})^{n}\right]\)
    \(\mathcal{S}(\boldsymbol{x})^{n+1}=\Pi_{3}\left[\mathcal{S}(\boldsymbol{x})^{n}-\sigma\left(\mathcal{U}(\boldsymbol{x})^{k}\left(\mathcal{C}(\boldsymbol{x})-\mathcal{S}(\boldsymbol{x})^{n} \mathcal{U}(\boldsymbol{x})^{k}\right)-\nabla^{\top} \mathcal{Q}(\boldsymbol{x})^{n+1}\right)\right]\)
    \(\tilde{\mathcal{S}}(\boldsymbol{x})^{n+1}=2 \mathcal{S}(\boldsymbol{x})^{n+1}+\mathcal{S}(\boldsymbol{x})^{n}\)
    end for
```

It calculates for each channel the derivative in $x$ and $y$ direction. The differential operators $\nabla_{x} \nabla_{y}$ can be implemented using a difference scheme of choice. In our implementation we use forward differences. Since $\mathcal{S}$ is a single channel image, the gradient operator used in Algorithm 2 composes of a difference operator $\nabla_{x}$ and an operator $\nabla_{y}$ i.e: Which calculates for each channel the derivative in $x$ and $y$ direction. The differential operators $\nabla_{x} \nabla_{y}$ can be implemented using a difference scheme of choice. In our implementation we use forward differences. Since $\mathcal{S}$ is a single channel image, the gradient operator used in Algorithm 2 composes of a difference operator $\nabla_{x}$ and an operator $\nabla_{y}$ i.e.:

$$
\nabla=\left[\begin{array}{l}
\nabla_{x}  \tag{5}\\
\nabla_{y}
\end{array}\right]
$$

## 2. Evaluation

The following figures show additional results of our approach on real world scenes, which we recorded with a Kinect One. For every figure we show the input color image $\mathcal{C}$, the infrared albedo image $\mathcal{A}$ after fusion, our color albedo image $\mathcal{U}$, and our estimated shading image $\mathcal{S}$. As comparison we provide the results of the approach of Chen et al. [2]. We compute these results using their publicly available implementation.


Figure 1: Paper Figure 4 row 1


Figure 2: Paper Figure 4 row 2


Figure 3: Paper Figure 4 row 3


Figure 4: Same scene as Figure 1 with additional spot light.


Figure 5: Desk scene with different objects. Note: our approach better removes shadows from the wall behind the boxes.


Figure 6: Desk scene


Figure 7: Chairs


Figure 8: Chair


Figure 9: Chair


Figure 10: Desk scene. Note that our algorithm maintains details in the color albedo image $\mathcal{U}$, which are not present in the infrared albedo image $\mathcal{A}$, e.g., text on printed paper.


Figure 11: Desk scene


Figure 12: Desk scene


Figure 13: Stand


Figure 14: Shelf


Figure 15: Stand


Figure 16: Book shelf

## References

[1] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV, 40(1):120145, 2011. 1
[2] Q. Chen and V. Koltun. A simple model for intrinsic image decomposition with depth cues. In Computer Vision (ICCV), 2013 IEEE International Conference on. IEEE, 2013. 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

