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A. Derivative of Pose w.r.t. Control Points
The Jacobians defined in (14) and (15) require the derivative of a pose T (t) ∈ SE(3) at time t w.r.t. to increments to the

four control points defining the pose, i.e., ∂T (t)
∂∆TC

∣∣∣
∆TC=0

. Let t ∈ [t1, t2) then T (t) is influenced by TC,0, TC,1, TC,2, TC,3.

The increments are represented as 6-vectors belonging to the Lie algebra se(3). Therefore, the Jacobian is a 12× 24 matrix.
The pose of a control point TC,l is updated with an increment ∆TC,l ∈ se(3) with TC,l ← exp(∆TC,l)TC,l.

Writing T (t) in terms of (4) using the control points and their increments we obtain:

T (t) = exp(∆TC,0)TC,0A1A2A3 (A.1)

with

Ai = exp

(
Bi(u) log

((
exp(∆TC,i−1)TC,i−1

)-1
exp(∆TC,i)TC,i

))
. (A.2)

Therefore, each of the increments to TC,0, TC,1, TC,2 appears in two factors and the one to TC,3 only in A3. Writing the
Jacobians for every control point separatly and applying the product rule we get:

∂T (t)

∂∆TC,0

∣∣∣∣
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∂∆TC,0
+
∂ (TC,0A1A2A3)

∂A1

∂A1

∂∆TC,0
(A.3)
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(A.4)
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The derivatives for the first factor in each summand can be derived using formula (7.11) and (7.12) from [1]. The last missing
expressions are ∂Ai

∂∆TC,i−1

∣∣∣
∆TC,i−1=0

and ∂Ai

∂∆TC,i

∣∣∣
∆TC,i=0

. Applying the chain rule we get:

∂Ai

∂∆TC,i
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=
∂ exp(ξ)

∂ξ
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ξ=Bi(u) log(T -1

C,i−1TC,i)
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∂ log(T -1
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(A.7)
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For ∂Ai

∂∆TC,i−1
the expression log(T -1

C,i−1 exp(∆TC,i)TC,i) changes to log(T -1
C,i−1 exp(−∆TC,i−1)TC,i),

letD = exp(−∆TC,i−1), we see that only the last factor in (A.7) is different for ∆TC,i−1 and ∆TC,i. It turns out that

∂ exp(∆TC,i)

∂∆TC,i

∣∣∣∣
∆TC,i=0

= − ∂ exp(−∆TC,i−1)

∂∆TC,i−1
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∆TC,i−1=0

. (A.8)

Therefore, we get ∂Ai

∂∆TC,i−1

∣∣∣
∆TC,i−1=0

= − ∂Ai

∂∆TC,i

∣∣∣
∆TC,i=0

. This simplifies the derivatives in (A.3), (A.4), (A.5) and

(A.6), because the last summand in (A.3) is given by the negative of the first summand in (A.4) and so on. Note that (A.7)
requires the Jacobian of the matrix exponential at a point different from identity. We derived an analytic expression for this
Jacobian from the closed form solution of the matrix exponential using a computer algebra system. We verified that the
derivative of the rotational part gives the same results as the formula derived by Gallego et al. [2]. It is important to have an
analytic expression for this Jacobian, because it has to be evaluated for every row in the image.

As we show above, it holds that
∂ log(T -1

C,i−1 exp(∆TC,i)TC,i)

∂∆TC,i

∣∣∣
∆TC,i=0

= − ∂ log(T -1
C,i−1 exp(−∆TC,i−1)TC,i)
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.

Therefore, we only need one 6 × 6 Jacobian matrix for every knot interval which is independent of t and which we pre-
compute once per iteration using numerical differentiation.
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