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Abstract. We develop a 4D (3D plus time) statistical shape model for
implicit level set based shape representations. To this end, we represent
hand segmented training sequences of the left ventricle by respective 4-
dimensional embedding functions and approximate these by a principal
component analysis. In contrast to recent 4D models on explicit shape
representations, the implicit shape model developed in this work does not
require the computation of point correspondences which is known to be
quite challenging, especially in higher dimensions. Experimental results
on the segmentation of SPECT sequences of the left myocardium confirm
that the 4D shape model outperforms respective 3D models, because it
takes into account a statistical model of the temporal shape evolution.

1 Introduction

Model-based imaging analysis of the left ventricle (LV) has gained an important
role in diagnosis and treatment of heart diseases [8]. Segmentation in particular,
either of the inner volume or the myocardium has found to be a significant pre-
requisite of further quantitative analysis, such as the estimation of the ejection
fraction within one cardiac cycle. With standard 3D approaches, segmentation
is carried out for each recorded image volume separately, i.e. by neglecting all
temporal correlations. Recent approaches however aim at taking also the tempo-
ral dimension into account, arising from the fact that more and more 4D, i.e. 3D
plus time, imaging techniques have become available. Relative to cardiac imag-
ing, which provides a relatively high three-dimensional spatial resolution, isotope
imaging methods, like gated perfusion SPECT, still have low resolution in both
space and time and exhibit a relatively low signal to noise ratio. On the other
hand, SPECT imaging inherently provides an excellent mean for cardiovascular
diagnosis, because it allows direct visualization of physiology.

In terms of shape modeling, either explicit representations by landmarks or
binary images/volumes are employed, or implicit ones, describing the separat-
ing three-dimensional contour as the zero-level set of a four dimensional func-
tion [16, 11]. Additionally, a statistical model is incorporated, in order to describe
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inter-patient shape variabilities. In most cases, Principal Component Analysis
(PCA) is the method of choice. In the case of explicit shape representations [4, 9],
PCA is either applied directly to the landmark coordinates or to the components
of a deformation field relative to a mean shape, or, for the implicit representation,
to the components of the embedding level set functions [11, 17, 20].

The extension of shape models to the spatio-temporal case has been mainly
pursued with explicit (parametric) shape models [18, 3, 12, 14]. While these meth-
ods have shown quite some success in modeling and estimating the temporal
evolution of surfaces, one should point out that explicit shape representations
are known to have certain inherent limitations. Firstly, when matching two para-
metric surfaces (in the shape learning phase), there is the fundamental corre-
spondence issue of which points on one surface are associated with which points
on the other surface. Explicit representations are typically based on a specific
point correspondence, estimating this correspondence and thus solving this com-
binatorial problem is an enormous computational challenge [6], especially in the
4D case considered in this paper. Misaligned point correspondences will appear
as artifacts in the subsequently estimated shape deformation modes. Secondly,
in the shape estimation step, the evolution of parametric surfaces has certain
limitations. The spatial resolution of the surface representation is determined
by the local density of control points which may fluctuate due to the motion
of points. This evolution may become unstable once control or marker points
start overlapping. Splitting or remerging of contours in the segmentation of
multiply-connected structures is by default not possible. Sophisticated regrid-
ding mechanisms are required to handle these problems [7]. At the same time,
the required amendments to the control point evolution may lead to artifacts
in the shape deformation that are not inherent to the geometric shape warping
problem.

While the level set method overcomes the above drawbacks of explicit repre-
sentations, there have only been very few recently published works on extending
the shape modeling to the spatio-temporal domain [5, 19]. While the latter ap-
proaches treat the temporal dimension separately and employ dynamical models,
we propose to treat time as an ordinary fourth dimension and thus implement-
ing a segmentation of the volume sequence as a whole. Unlike Chandrashekara
et al. [3], who developed this idea for deformation fields relative to an explicit
(parametric) mean sequence, we propose to apply a 4D PCA subspace estimation
directly to the level set functions. As a consequence, we do not require a sophis-
ticated non-rigid registration of training sequences, or the challenging combina-
torial correspondence searches required by explicit landmark-based approaches.
Moreover, due to considering all volumes of a sequence at the same time, and
thereby also learning the temporal evolution of the shape model, segmentation
quality can be shown to improve over treating each volume separately [11]. In
addition, temporal alignment can be incorporated into the segmentation pro-
cess straightforwardly, avoiding the need for any pre-alignment of the input
sequence.
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2 Approach

2.1 Level Set Representation

Let the recorded image volume sequence be denoted by the continuous intensity
function I : Ω×[1, T ] → R defined on the 3D volume Ω ∈ R3 and the time period
[1, T ]. In contrast to other approaches treating intensity volumes at different
times points separately, in the following we will always consider I as a function
in the four-dimensional spatio-temporal space Ω × [1, T ].

In order to be independent of contour parametrization, support topological
changes as well as avoiding correspondence problems when introducing a prior
shape model later on, we pursue the approach in [16] in application to the four-
dimensional space and embed any contour C : [0, 1]2 × [1, T ] ⇒ R

2 as the zero
level set of a function φ : Ω × [1, T ] ⇒ R, such that

C(x, t) = {(x, t) | φ(x, t) = 0} ,

which has been successfully applied to 2D [13] and 3D [10] image segmentation.
In aiming at having a unique correspondence between a shape C and its em-
bedding function, we furthermore assume φ to be a signed distance function, i.e.
|∇φ| = 1 almost everywhere.

However, since we want to estimate spatial translation and scale as well as
temporal translation and scale separately, we introduce the intermediate trans-
formation

Tθ(x, t) :=
(

θmsx − θds

θmtt − θdt

)
,

with θds ∈ R
3 and θdt ∈ R referring to translation parameters in space and time,

respectively, and θ−1
ms

∈ R and θ−1
mt

∈ R to those in scale1, respectively. By this,
the embedding function will, in the following, be of the form:

φθ(x, t) := θ−1
ms

φ
(
Tθ(x, t)

)
.

2.2 Segmentation as Variational Problem

Subsequently, the problem of segmenting the image sequence I implicitly by the
4D level set function φ is stated as the joined minimization of the energies

E(φ, θ) = Edata(φ, θ) + ν Eshape(φ) , (1)

where the data-driven energy term Edata(φ, θ) = − log P(I | φ, θ) measures the
probability of observing the image sequence I given the segmentationφ (at place
θd and scale θm), and Eshape(φ) = − logP(φ), which reflects the probability of
the occurrence of a segmentation φ in relation to a set of 4D training segmenta-
tions {φ̂1, . . . , φ̂M}.

1 Here, we consider only isotropic scale in space.
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In particular, for the data energy term we make use of the global approach by
Mumford and Shah [15] given as a level set formulation [2] in the spatio-temporal
space Ω × [0, T ]:

Edata(φ, θ) :=
∫

[1,T ]

∫
Ω

(
I(Tθ(x, t)) − μ1(t)

)2
Hφθ(x, t)

+
(
I(Tθ(x, t)) − μ2(t)

)2 (
1 − Hφθ(x, t)

)
dx dt (2)

with Hφ := H(φ) denoting the Heaviside step function, which is one at coordi-
nates (x, t) where φ is positive, and zero else, as well as μ1 = 1

α1

∫
[1,T ]

∫
Ω IHφθ

dx dt, μ2 = 1
α2

∫
[1,T ]

∫
Ω

I(1 − Hφθ) dx dt, and ak =
∫
[1,T ]

∫
Ω

Hφθ dx dt, k = 1, 2.
With respect to the shape prior, we propose to conduct an PCA directly

on the set of vectorized training sequences thereby reaching a low-dimensional
parametrization of the subspace [11, 20]:

φα(x, t) := φ0(x, t) + α�ψ(x, t) (3)

where ψ = (ψ1, . . . , ψK)� denotes the eigenmode vector of the 4D levelset func-
tions and φ0 = 1

M

∑M
i=1 φ̂i the mean function2. Note that in contrast to [20],

the eigenmodes here describe spatio-temporal variations across the whole volume
sequence. Within this subspace coordinate system, we assume the prior proba-
bility P(φ, θ) as multivariate Gaussian distribution, and infer for an arbitrary
function φα the energy

Eshape(φ) := α�Σ−1α

with Σ−1 denoting the inverse eigenvalue matrix resulting from the PCA.
Moreover, following the approach suggested in [20], we represent φ by means

of the parametrization given in (3) throughout the whole segmentation problem,
i.e. also in the data term, and consequently substitute φ by φα in (2). Thereby,
we restrict the minimization of (1) to the much lower-dimensional subspace
induced by the training shapes.

Due to the prior shape model being invariant towards translation and scale
both in space and time, it is required for the training set to be free of such
transformations prior to applying the PCA. Here, this is implemented by a prior
alignment of each training shape φ̂i to an arbitrarily chosen reference by mini-
mizing the energy∫

[1,T ]

∫
Ω

(
θ−1

ms
φref

(
Tθ(x, t)

)
− φ̂i(x, t)

)2
dx dt, i = 1, . . . , M .

2.3 Gradient Descent Minimization

Determining a minimum of (1) with respect to α and θ is implemented by
gradient descent with respect to both vectors, that is
2 Note that φα is not a distance function, since the space of the latter is nonlinear.
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dα(τ)
dτ

= −∂Edata(α, θ)
∂α

− ν
∂Eshape

∂α
, and

dθ(τ)
dτ

= −∂Edata(α, θ)
∂θ

with τ denoting the artificial evolution time, as opposed to the physical time t,
and dτ the gradient step size. Thereby, the data term gradient reads

∂Edata

∂αi
=

∫
[1,T ]

∫
Ω

((
I − μ1

)2 −
(
I − μ2

)2
)

δ(φα,θ) θ−1
ms

ψi

(
Tθ(x, t)

)
dx dt ,

with δ referring to the regularized Dirac measure, and the prior gradient ∂Eshape

∂α
= Σ−1α. Furthermore, the gradient of the scaling and translating transformation
is given by

∂Eshape

∂θξ
=

∫
[1,T ]

∫
Ω

(
(I − μ1)2 − (I − μ2)2

)
δ(φα,θ) ∇φα,θ

dTθ

dθξ
dx dt

with ξ ∈ {d, m}, and dTθ

dθd
= −

(
13
1

)
, dTθ

dθm
=

(
x
t

)
, respectively.

3 Experimental Evaluation and Discussion

We compared the segmentation results of our proposed approach to that of
Tsai et. al. [20] (3D, similarity transforms only, Chan-Vese) while measuring
the relative symmetric voxel error : |b(φ) ⊗ b(φref )| / |b(φref )| with b(φ) giving
the binarized volume of φ, ⊗ denoting the exclusive or operator and φref the
ground truth distance function. As training and ground truth data sets we had
15 hand-segmented gated perfusion SPECT recordings of the left myocardium
with a volume of 30×30×27 voxels (each of size 6.59mm3) times eight frames
over the cardiac cycle, and possible pathologies being removed. After alignment
due to translation and scale, as explained above, 3D PCA was conducted over
the vectorized 15× 8 volumes alike, whereas 4D PCA on the 15 vectorized se-
quences only. Ten gradient descent iterations were taken for 3D or 4D. Scaling
and translation parameters θ were performed prior to the interleaved descent
for both α and θ in order to avoid local minima with respect to (α, θ) due to
spatial or temporal misalignments. Different weightings ν of the prior gradient
were tried in the range from 1/100 to 1/1 of the data gradient’s L2 norm and
we chose the one yielding the best results w.r.t. the quality measure.

Figures 1 and 2 depict two typical segmentation results for both methods in
comparison to the hand-segmented ground truth. While the dataset in Fig. 1 was
contained in the training set, that in Fig. 2 was not. In the first experiment, the
3D-based method yields a systematic over-segmenting especially at end diastole,
which is mainly due to over-estimating the per-volume scales. The error for the
3D approach did range from 35% (end systole) up to 90% (end diastole) vs. 40%
to 20% with the 4D approach (averages: 53% vs. 28%). In the second experiment,
Fig. 2, the 3D prior subspace allows for too many variations3, due to ignoring
3 A stronger weighting of the prior term inhibits most of the temporal variation.



4D Shape Priors for a Level Set Segmentation 97

x = 17

t = 1

y = 15 z = 19 z = 16 z = 13 z = 10

t = 3

t = 4

t = 5

t = 6

t = 7

t = 2

t = 8

Fig. 1. Segmentation result for a sequence included in the training set. White: Man-
ually segmented ground truth. Gray: 3D-prior method. Black: 4D-prior method. Esti-
mating one scale for the whole sequence yields better results than one for each volume,
and in turn allows for a better fit with respect to shape.
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Fig. 2. Segmentation result for a sequence not being in the training set. White: Manu-
ally segmented ground truth. Gray: 3D-prior method. Black: 4D-prior method. Due to
taking the temporal correlations into account also, the 4D prior yields a more specific
prior per time point. Despite a strong weighting of the 3D prior, better results for the
latter were not achievable, while still allowing for temporal variations.
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the temporal index. On the other hand, the fifteen training vectors of the 4D
PCA already yield an acceptable generalization (the errors were: 35% to 80%
vs. 40% to 30% and 57% and 27% in average). These and other experiments
clearly show the advantage of the new approach of taking the whole temporal
dimension into account — both in the data-dependent probability, as well as the
statistical shape prior.
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