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Foreword

The real voyage of discovery consists not
in seeking new landscapes, but in having new eyes.

Marcel Proust (1871-1922)

As the title of the current thesis suggests, convex modeling will play a central role throughout
the work. Yet, convexity is utilized not as a construct to give a scientific form to the thesis.
I will try to convince the skeptic readers that, along with mathematical elegance, it provides
the capabilities to build robust and accurate approaches of high practical value.

One could argue that focusing on convex formulations limits the sight and does not allow to
explore the whole potential of the application. In particular, it is debatable if the starting
point of developing novel methods should be the optimization or the structure of the model.
Accordingly, one can distinguish between two different research philosophies. While I was
following “optimization-oriented” principles, there are of course many alternative approaches
which may be equally valid. As always in research, there is not just one way to reach a goal.

Although special attention was attached to the intelligibility of the thesis, the reader needs
some basic knowledge of analysis, variational calculus and epipolar geometry to understand
it.

Even though I am the sole author of the thesis, it is written in first person plural. The first
reason for that is that it is an established form in scientific publications. The second reason
is that there are multiple people who supported me during my research and contributed to
the work.

First of all, I want to thank the “usual suspect” – my supervisor Prof. Daniel Cremers. I
would like to thank him for teaching me to think like a researcher, to write things down
and to present my work in a convincing and understandable way. Actually, he was for me
more than a supervisor by supporting me during all the time and never losing faith in me
and my capabilities. Moreover, all the colleagues, who I worked with during my PhD pe-
riod, should be acknowledged – Thomas Brox, Thomas Pock, Selim Esedoglu, Maria Klodt,
Thomas Schoenemann and Mathieu Aubry. I thank them for the very fruitful collaboration.
I also want to thank all the students who I supervised – Björn Sondermann, Haj Bensouda,
Svetlana Matiouk and Pascal Wauer. I further want to thank the German research foundation
DFG for funding my research.

Science is not everything in life, even for a scientist, and therefore my final thanks are ad-
dressed to those people who always supported me. These are, in particular, my parents, my
sister and her family.

Garching, June 12, 2011 Kalin Kolev

III



IV Foreword



Abstract

This work deals with the application of convex optimization techniques to the context of image-
based 3D surface reconstruction, in particular shape from silhouettes, multiview stereo and
3D segmentation. The focus is thereby not only on the optimization, but also on the design of
appropriate energy functionals to be minimized. Most of the chapters of this thesis are devoted
to the construction of different energy models addressing various 3D reconstruction problems.
In all cases, the modeling results in a convex optimization problem or involves handling convex
subproblems. Numerical algorithms for solving them are presented and discussed in a separate
chapter.
The current work starts with a brief introduction to the fields of multiview 3D reconstruction
and 3D segmentation, two fundamental computer vision problems, and establishes the relation
between them. In addition, it treats the main concept of convexity which forms the theoretical
basis for all energy models considered in this manuscript. Special attention is paid to the
conceptual differences between continuous and combinatorial optimization, in particular in
terms of metrication accuracy, parallelizability and memory requirements. The demonstrated
advantages of continuous techniques pose the main motivation for studying convex models.
Chapter 2 proposes an interactive framework for color-based 3D reconstruction from mul-
tiple images. For a user-provided input in the form of scribbles specifying foreground and
background regions, corresponding color distributions are built as multivariate Gaussians and
subsequently a 3D surface, that best fits to this data in a variational sense, is derived. The
goal of the proposed probabilistic formulation is to enable robust 3D estimation by optimally
taking into account the contribution of all views. Compared to classical methods for shape
from silhouettes, the presented approach does not depend on initialization and enjoys signif-
icant resilience to violations of the model assumptions due to background clutter, specular
reflections and camera sensor perturbations. Furthermore, we will see that exploiting a silhou-
ette coherency criterion in a multiview setting allows for dramatic improvements of silhouette
quality over independent 2D segmentations without any significant increase of computational
efforts.
While color-based 3D reconstruction methods are fast and robust, their accuracy is limited.
In particular, they are unable to recover surface concavities since these do not affect the pro-
jected object outlines. A remedy to this weakness offer multiview stereo approaches which
aim at identifying view points corresponding to the same 3D geometry and allow for a much
more precise localization of the imaged structure. Chapter 3 proposes three different energy
models for multiview stereo amenable to convex optimization. They are based on a common
variational template unifying regional volumetric terms and on-surface photoconsistency and
use data measurements at increasing levels of sophistication. While the first two approaches
are based on a classical silhouette-based volume subdivision, the third one introduces the
concept of propagated photoconsistency, thereby addressing some of the shortcomings of tra-
ditional methodologies. Further, in Chapter 5, we will see how this model can be generalized
by anisotropic regularization schemes and minimal ratio formulations. The proposed gen-
eralization entails additional useful properties like capabilities to integrate surface normal
information, absence of a shrinking bias and scale invariance.
Unfortunately, multiview stereo as a paradigm also has its limitations and failure cases. First
of all, the success of stereo-based approaches strongly depends on the viability of the matching
process which, in turn, relies on Lambertian reflectance properties of the scene. Yet, lack of
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texture, unknown projective distortion and deviations from the Lambertian assumption make
the matching of corresponding image points to a quite challenging task. These difficulties
naturally lead to the idea of constructing algorithms that integrate multiview stereo and
silhouettes aiming at reaching the robustness of shape-from-silhouette methods while retaining
the accuracy of stereo-based ones. Chapter 4 deals with the design of such an approach and
demonstrates that the fusion of stereo and silhouette information can be formulated as a
problem of minimizing a convex functional over a convex domain, where the cost measure
favors photoconsistent surfaces while the provided silhouettes are used to define a set of
feasible shapes. Thus, the modeling boils down to solving a classical constrained convex
optimization problem.
Chapter 6 extends the application field of the thesis by considering the problem of 3D seg-
mentation in fluorescence imaging. Once again, convex optimization proves useful, allowing
for accurate segmentations of the provided noisy volumetric measurements. An appropriate
energy model fusing various cues like regional intensity subdivision, edge alignment and ori-
entation information, tailored to the particular application at hand, is built and analyzed.
Yet, despite this concrete scenario, the proposed approach is general enough to be applied to
a variety of different segmentation tasks.
The work concludes with a summary of the main contributions and outlines directions for
future research.
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1 Introduction

A theory that fits all the facts is bound
to be wrong as some of the facts will be wrong.

Francis Crick (1916-2004)

As technology becomes more powerful, attention is being focused on the capability to virtually
reproduce the surrounding three-dimensional real world. As a consequence, a great effort is
being made to enable the creation and acquisition of high-quality 3D models. Application
fields range from entertainment industry to robotics, cultural heritage and medicine.
A straightforward but very tedious and time-consuming way to obtain a 3D model of an ex-
isting object is to generate the observed 3D structure by hand, using a CAD1 tool. Apart
from its high costs, the precision of this technique is limited since it is based on visual per-
ception rather than physical measurements. Even though manual modeling is widely-used in
the movie and game industry, it is not interesting for application domains, where the physical
accuracy of the 3D models is essential. Furthermore, the tremendous amount of human ef-
forts needed makes this brute-force approach practically inapplicable for modeling large-scale
scenes like cities and landscapes.
An alternative method for the automatic and highly precise acquisition of 3D models offer
3D scanning technologies. Among the most popular devices are laser range scanners [83] and
structured-light scanners [146]. The functionality of a laser scanner is based on a laser light
and a triangulation principle to probe the environment. The device shines a ray on the subject
and exploits a camera to look for the location of the projected dot. Depending on how far
away the laser strikes a surface, the laser dot appears at different places in the camera’s field
of view. In most situations, a single scan does not produce a complete model of the subject.
Multiple scans, even hundreds, from many different directions are usually required to obtain
information about all sides of the modeled object. Finally, all range scans have to be registered
within the same coordinate system, which is generally not a trivial task. Structured-light 3D
scanners project a pattern of light on the subject and look at the deformation of the pattern
on the surface. This scanning technique is considerably faster since multiple points or the
entire field of view is being scanned at once. While 3D scanners can produce highly accurate
models, they typically require expensive hardware or need to deploy a specialized equipment.
Moreover, they have a quite limited range and often require controlled illumination conditions,
which poses a major difficulty in using them for modeling large-scale real-world scenes.
The aforementioned weaknesses of traditional 3D scanning techniques led to the development
of time-of-flight (TOF) cameras.2 A TOF camera has a variety of advantages over alternative
scanning technologies [27]. It is an active sensor that measures the travel time of infrared

1. Computer Aided Design

2. Recently distributed Kinect cameras [90] can also be classified in this category.
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2 Introduction

Fig. 1.1: Image-based 3D modeling. Image-based modeling approaches aim at estimating the 3D shape of
a given object from a collection of images capturing its appearance from various viewpoints. The multiview
reconstruction pipeline is usually split into two stages. In the first one, the input images are calibrated, i. e.
the position and orientation of the utilized cameras as well as their intrinsic parameters are estimated. In
the second stage, the imaged 3D geometry is derived, taking the particular camera setup into account.

light, and therefore it does not interfere with the scene in the visual spectrum. This makes
TOF cameras quite practical for outdoor scenarios since they do not require a controlled
illumination environment. Moreover, TOF cameras are capable of operating over very long
distances, which strengthens their suitability for modeling of large-scale scenes. Finally, core
components of such a device are a CMOS chip and an infrared light source which bears the
potential for low cost manufacturing. However, TOF cameras have a major disadvantage –
their accuracy is limited. In particular, they have a very low resolution, an adverse random
noise behavior, and a substantial systematic measurement bias. Some attempts have been
made to address these shortcomings by fusing TOF sensor measurements and traditional
binocular stereo depth-maps [147], but it is unclear how to estimate the reliability of both
sources in order to guarantee an adequate integration process.
The complicacies faced when using active scanning technologies focused the attention of many
researchers on image-based techniques for 3D modeling. The formidable progress in multiview
3D reconstruction in recent years [112, 122], along with the rapid developments in digital
photography, makes vision-based methods more and more attractive for generating fast, easily
and reliably 3D content.

1.1 Image-Based Modeling

Problem Statement

Image-based modeling approaches use digital photographs to model the geometry of an ob-
served 3D scene (see Fig. 1.1). The problem of reconstructing 3D shapes from a collection of
images is one of the fundamental problems in computer vision since understanding the image
formation process is at the core of many vision tasks. Yet, with the explosion of consumer
digital photography and the revolution in multiview 3D reconstruction, the problem emerged
to one of the most promising and extensively studied alternatives to active scanning. Nowa-
days, the interest in image-based modeling reaches far beyond the field of computer vision
and attracts the attention of researchers in graphics, robotics, archeology and medicine.
The multiview reconstruction pipeline is usually split into two stages. In the first one, the
input images are calibrated, i. e. the position and orientation of the utilized cameras as well
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as their intrinsic parameters are estimated. In the second stage, the imaged 3D geometry is
derived, taking the particular camera setup into account. The problem of automatic camera
calibration from photographs has undergone an immense exploration in the last and the first
half of the current decade and could, to some extend, be considered as geometrically solved.
Several good books on that topic [50, 37], as well as publicly available software [1, 2, 3], exist.
Yet, the 3D modeling still poses a major challenge. For that reason, in this work we assume
that the input images are calibrated in a preprocessing step and concentrate on the modeling
stage of the reconstruction pipeline. For some of the utilized image sequences calibration
information was already provided. For the rest of the data sets we used the Bundler software
[1] to estimate the calibration.
Image-based modeling approaches, also referred to as shape-from-X, can be classified according
to the exploited visual cues. Some of the most popular domains are:

• Shape from silhouettes [79]

• Shape from stereo [112, 122]

• Shape from texture [138]

• Shape from shading / photometric stereo [53, 139]

• Shape from focus/defocus [96]

The exploration of all these cues is motivated by the investigation of the human perceptual
system. It should be noted that some of these techniques are passive while others are active.
For example, approaches exploiting shading information require controlled illumination con-
ditions and approaches based on changing focus operate on pictures taken with different focus
settings from the same viewpoint. On the other hand, shape-from-silhouette and multiview
stereo methods use only the raw image data as input. Though classical shape-from-silhouette
algorithms employ object outlines in binary form, others like the one described in Chapter
2 use only image color information. Shape from texture comprises a particular class of ap-
proaches that are passive in nature, as they do not require controlled environments, but they
are restricted to a very narrow class of objects. While active approaches can achieve a high
precision, comparable to that of laser scanners, they are not applicable to many real-world
scenarios due to the specific imaging conditions required. In contrast, passive methods are
very general and bear the potential for satisfying the growing demand for digital 3D models,
but still suffer from limited accuracy. Closing the gap between active and passive image-
based modeling, by reaching the accuracy of active techniques while retaining the generality
of passive ones, is a central problem in the field.
One issue deserves more attention when dealing with image-based modeling. It is important
to note that the problem is ill-posed since the projection mapping is not invertible. As a conse-
quence, there are multiple possible solutions that could give rise to the provided observations.
In order to make the reconstruction problem meaningful, certain assumptions about the im-
aged geometry have to be made. Each utilized image cue in shape-from-X approaches implies
a particular assumption regarding the 3D scene. Nevertheless, some ambiguities remain. For
example, shape-from-texture methods have to cope with a two-fold texture normal ambiguity,
shape-from-shading methods – with a convex/concave ambiguity and shape-from-silhouette
methods – with infinitely many solutions being consistent with a given set of silhouettes.
Although different image cues could be combined to resolve these ambiguities [26, 137], an
integration process could lead to contradictory shape estimation due to image noise or model
inaccuracies and is not always preferable.
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Fig. 1.2: Silhouettes vs. stereo. Left: Silhouette consistency constraints enforce the surface projection to
coincide with the observed object outlines. Right: Stereo-based constraints maximize the correlation of the
visible projections for each point on the surface.

In this work we concentrate on generic image-based modeling, in particular based on silhou-
ettes and multiview stereo. In the following, we give more details on these two paradigms.

Silhouette Consistency

Let I1, . . . , In be a collection of input color images. In particular, Ii : Ωi → R3 for i = 1, . . . , n,
where Ωi denotes the domain of image i, usually a pixel grid, i. e. Ωi ⊂ Z2. Further, let V ⊂ R3

be a restricted volume area enclosing the scene of interest and πi : V → Ωi the projection
mapping of camera i. Since we assume precalibrated cameras, the projections πi are given for
all i = 1, . . . , n.
The goal of silhouette-based reconstruction approaches is to find a surface S ⊂ V such that its
projection onto the images coincides with the observed silhouettes of the object (see Fig. 1.2).
More concretely, if Sili ⊂ Ωi denotes the object silhouette in image i (which can be ob-
tained through segmentation), the estimated surface S should fulfill the following silhouette
constraints

πi(S) = Sili ∀ i = 1, . . . , n. (1.1)

Obviously, this criterion does not lead to a unique solution in general. This issue has been
investigated by Laurentini in [79], where he coined the term visual hull which is the largest
shape that fulfills the silhouette constraints in (1.1). In fact, most of the existing silhouette-
based approaches estimate the visual hull of the object or some approximation of it. Maybe,
silhouettes pose the most intuitive image cue to infer 3D geometry from observed projections.
Not surprisingly, the very first method for multiview 3D reconstruction is a silhouette-based
one [8]. Due to their simplicity, shape-from-silhouette techniques feature a high degree of
stability and efficiency and are still preferred in some applications like robot navigation and
tracking. Their main disadvantage is the inability to reconstruct surface concavities since
these do not affect the outlines of the imaged object. For that reason, they are not capable
of delivering high-quality 3D models of arbitrary objects. Yet, silhouettes exhibit a very
powerful image cue and are successfully used in combination with alternative cues like stereo
[26] and shading [133]. In some cases, a rough silhouette-based reconstruction is used as an
initialization. In others, the silhouette constraints in (1.1) are used in a hard or soft form to
restrict the set of admissible shapes.
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Multiview Stereo

The basic idea behind multiview stereo is to infer 3D geometry by matching image points
corresponding to the same spatial structures (see Fig. 1.2). For given camera calibration, the
underlying 3D points can be obtained via triangulation of the respective visual rays. It is
important to note that the stereo concept is based on Lambertian reflectance properties of
the imaged object, i. e. the reflected intensity at each point on the surface does not depend
on the viewing direction. While this assumption is justified for a wide range of real-world
objects, it breaks down for shiny or mirroring objects which follow a more complex reflectance
model. Hence, such test cases pose a formidable challenge for multiview stereo approaches.
Yet, stereo-based methods enjoy very high popularity due to their generality and fidelity.
To elucidate the principle of multiview stereopsis, let us assume that the observed surface is
parametrized as S : Θ ⊂ R2 → V .3 Essentially, all stereo-based methods aim at minimizing
the variance of the following color samples

C(s) = { Ii(πi(S(s))) | i ∈ V is(s) } (1.2)

for all s ∈ Θ. Thereby, V is(s) ⊂ {1, . . . , n} denotes the visibility of point S(s), i. e. the
indices of cameras that have a direct visual contact to the point. There are two important
aspects that should be tackled when designing a stereo-based method – visibility estimation
and realization of the variance of the projection sets (1.2).
In multiview stereo, accurate visibility estimation is crucial. Different strategies were proposed
in the literature to handle the problem. The most popular approach is the state-based one
[125, 33]. The key idea is to integrate the visibility computations in a local surface evolution
process. Thereby, the current surface estimate serves as a basis for visibility considerations in
subsequent data term updates. While this simple technique works reliable if a good surface
initialization is provided, they may fail in case of a poor initialization. A different straightfor-
ward approach is to exploit the usually known camera calibration to identify cameras which
are geometrically close to each other and are likely to see approximately the same part of the
scene. It is typically referred to as oriented visibility [81, 134]. This strategy gives good results
for convex objects but could produce inaccuracies at concavities and locations of abrupt depth
changes. Another methodology envisages to intertwine the reconstruction and the visibility
estimation process [41, 84]. Thereby, visibility computations are based on a series of heuristics
and are performed only for points on the surface. Even though such methods could lead to
very accurate reconstructions, their reliability is doubtful in challenging situations. Maybe
the most transparent way to solve the visibility problem is to explicitly incorporate it in the
cost function [43, 28]. Despite rigorousness, this formulation entails multiple optimization dif-
ficulties. In particular, the arising minimization problems are typically highly non-convex and
thus susceptible to undesired local solutions. Interestingly, there is one strategy that avoids
direct confrontations with the visibility problem – the voting schemes proposed in [33, 132].
The basic idea is to let each camera give a vote for the state of a point in space without any
visibility considerations. The fusion scheme of the various votes is implemented in a way that
encourages occluded cameras to be discarded. In Chapter 3, we give more details on this
approach since a variant of it is used.
At the core of multiview stereo is the minimization of the variance of the projection sets (1.2)
for all points on the hypothetical surface. Traditionally, this is realized by means of the so
called photoconsistency map ρ : V → (0, 1]. It assigns each point within the volume V a cost

3. This assumption is made here for the sake of simplicity. In fact, most of the existing multiview stereo
approaches do not rely on an explicit surface parametrization. This issue will be discussed in more detail
in the course of the current work.
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measure proportional to the variance of the corresponding projection set. As a consequence,
high values (close to 1) imply low probability for lying on the surface and low values (close
to 0) – high probability. Hence, the multiview stereo problem consists in finding the surface
with the best overall photoconsistency. Usually, the photoconsistency is defined by means of
similarity measures which express the correlation of different points in different images.
In many practical cases, direct comparison of the colors for different image projections is not
reliable due to color similarities of different objects, image noise or calibration inaccuracy. As
a remedy, correlating entire local image neighborhoods instead of single points has become an
established strategy. To this end, various similarity measures have been investigated. Here,
we introduce two of the most popular tools – sum of squared differences (SSD) and normalized
cross correlations (NCC). Let pi ∈ Ωi and pj ∈ Ωj be two pixels in two different images that
should be tested on similarity. Let P(pi, pj) ⊂ Ωi × Ωj be a set of pixel pairs describing
corresponding patch neighborhoods around both pixels, in particular (pi, pj) ∈ P(pi, pj). For
example, for simple square patches of size (2m + 1) × (2m + 1), centered at (0, 0), we have
P((0, 0), (0, 0)) = {−m, . . . ,m}2×{−m, . . . ,m}2.4 More complex methodologies taking three-
dimensional information into account are also possible. Now, the SSD score can be defined
as

SSD(pi, pj) =
∑

(oi,oj)∈P(pi,pj)

|Ii(oi)− Ij(oj)|2. (1.3)

Here, not only the image points themselves are involved in the computation, but also points
within the entire neighborhoods. The SSD-measure is very simple and works well in many
cases. Yet, its robustness to image noise and deviations from the Lambertian assumption is
limited. For example, specular reflections or inaccurate color calibration of the cameras lead to
poor performance due to the requirement of a direct color accordance. This flaw is addressed
by the NCC-measure which offers considerably more resilience to illumination variations. It
is given by

NCC(pi, pj) =
∑

(oi,oj)∈P(pi,pj)

〈Ii(oi)− Īi(pi), Ij(oj)− Īj(pj)〉√ ∑
(oi,oj)∈P(pi,pj)

|Ii(oi)− Īi(pi)|2
√ ∑

(oi,oj)∈P(pi,pj)

|Ij(oj)− Īj(pj)|2
,

(1.4)
where 〈., .〉 denotes the Euclidean scalar product and Īi(pi), Īj(pj) are the color means within
both patches. It could be noted that the NCC score is invariant to additive and multiplica-
tive illumination changes and thus compares the local image structure instead of the color
occupancy. The first is due to the subtraction of the mean value and the latter – due to the
normalization. Moreover, the NCC score always takes a value in the interval [−1, 1], where 1
means perfect matching and −1 perfect mismatching, respectively. The NCC-measure is both
robust and fast to evaluate, which is the reason for its enormous popularity in the multiview
stereo community. In fact, it has become to a standard tool in dense stereo-based modeling.

Challenges and Contributions

This work intensively deals with the image-based modeling problem. The goal is to increase the
robustness and extend the range of applicability while retaining high accuracy. In particular,
we focus on the following challenges:

• How can any dependence from an initial shape be removed in a way that prevents
premature termination and always guarantees a reasonable result ?

4. Boundary considerations are ignored here for the sake of simplicity.
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input volume superimposed
slices segmentation

Fig. 1.3: Volumetric 3D segmentation. Left: Multiple input volume slices, right: superimposed segmen-
tation result. The example shows a typical 3D segmentation problem arising in biological and medical
applications. The volume data captures the deformation of a vesicle membrane under osmotic pressure,
imaged by means of fluorescence microscopy.

• How should the methods be designed in order to make them more user-friendly (reducing
the number of parameters and any user efforts needed to run the algorithms) ?

• How can the process of silhouette-based reconstruction and image segmentation be cou-
pled with the objective of removing the necessity of preprocessing the images ?

• How can a multiview stereo system cope with objects violating the primary assumptions,
e. g. exhibiting specular reflections, lack of texture and thin geometric structures ?

• How can complementary image cues like stereo and silhouettes be integrated in a robust
and reliable way ?

In this thesis, we explore these issues and provide answers. We show that robust convex
regularization schemes could provide the necessary mathematical machinery to handle objects
with complex reflectance properties, e. g. shiny or weakly textured. Furthermore, approaches
that involve solving a strictly convex problem at a primary or intermediate stage always
lead to a unique solution, independent from initialization, which substantially increases their
robustness. We show how complex geometrical structures like fine-scale details and thin
protrusions can accurately be recovered by integrating stereo and silhouette information.
Once again, we rely on the powerful convex optimization framework, whereas the photometric
consistency affects the underlying cost function and the silhouette consistency enters in form
of convex constraints restricting the domain of feasible solutions. Moreover, we pay special
attention to the design of appropriate variational models amenable to convex analysis with
focus on rigorousness, robustness and accuracy.

1.2 3D Segmentation

Problem Statement

The problem of 3D segmentation is closely related to the problem of multiview 3D reconstruc-
tion. It consists in partitioning a given three-dimensional domain into coherent, semantically
homogeneous regions. In an alternative formulation, the problem transforms to one of finding
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a surface interface accomplishing the desired subdivision (see Fig. 1.3 for an example). More
specifically, if V ⊂ R3 denotes a given volume, the goal is to find a partitioning V1, . . . , VM

with the following properties:

• V =
M⋃
i=1

Vi.

• Vi ∩ Vj = ∅ ∀ i, j ∈ {1, . . . ,M}, i 6= j.

• Each Vi is homogeneous. The homogeneity criterion depends on the particular segmen-
tation task.

Obviously, one is confronted with similar optimization challenges as in the case of image-based
modeling and thus the same theoretical tools could be applied.
The segmentation problem is one of the most classical and intensively investigated in computer
vision. Various cues were explored to address it. In the example in Fig. 1.3, one can observe
that characteristic for the interior of the vesicle are low homogeneous intensity values while the
exterior region exhibits points of slightly higher intensity and substantially more noise. Hence,
interior/exterior subdivision can be achieved by modeling the intensity statistics of both
regions. In fact, region-based characteristics are an established cue in image segmentation [94,
22, 148]. Furthermore, the membrane surface in Fig. 1.3 is recognizable through its brightness
due to the fluorescence properties of the building material. Thus, a reasonable segmentation
approach should attract the estimated boundary towards such locations. This observation
forms the basis of edge-based segmentation methods [59, 19, 62]. Finally, the membrane in
Fig. 1.3 can be identified by estimating its orientation. In particular, the surface normal is
aligned with the intensity gradient since the boundary features an abrupt intensity jump (from
dark within the interior to bright at the boundary). The integration of orientation information
is at the core of flux-based segmentation approaches [130]. The exploration of all discussed
image cues is motivated by the human perceptual system. In real-world images, objects can
often be identified through its regional characteristics like intensity/color or texture. On
the other hand, this implies that the boundaries stand out as locations of remarkable image
gradient, which can be used as edge information in the segmentation. Moreover, higher order
shape characteristics like normal information are indispensable for the precise reconstruction
of thin structures like blood vessels.

Challenges and Contributions

While all aforementioned image cues prove useful in particular application scenarios, their
integration is not a trivial task. The construction of a general approach, applicable to a wide
range of segmentation problems, remains an active research domain. Another crucial challenge
is the choice of surface representation which is closely related to the underlying optimization
technique. Desired are properties like topological flexibility, efficiency and robustness to local
minima.
In Chapter 6 we tackle the problem of segmentation of vesicle membranes from fluorescence
3D imaging. The main contributions are summarized in the following:

• We unify various established image cues like regional statistics, edge attraction and
orientation information into a continuous convex energy model.

• We generalize traditional regularization schemes taking the sparse slicing of the mea-
sured volume data in the z-direction, inherent in confocal microscopy, into account. We
show that the generalized model retains convexity and thus all globality guarantees.
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Fig. 1.4: Convex vs. non-convex sets. Left: A convex set C is characterized by the property that for
each pair of elements x, y ∈ C the line segment connecting them is also contained in C. Right: For a
non-convex set at least one element pair exists that violates this condition.

• We adapt an efficient numerical scheme for solving the arising optimization problem.

As for image-based modeling, we make use of convex analysis to address the respective seg-
mentation problem. It is important to note that although the proposed approach is designed
with focus on a concrete application at hand, it is general enough to be applied to a variety
of different segmentation tasks.

1.3 Convexity as a “Well-Posed” Mathematical Concept

As the title of the thesis suggests, convexity plays a central role in the mathematical modeling
of the addressed problems. Convex optimization has become an appealing tool for solving a
variety of vision tasks like image segmentation [15, 21], image denoising/deblurring [21, 58]
and camera calibration [145]. An exhaustive exposition of convex analysis is out of the scope
of the work. Here, we allude to the concepts which are relevant to the understanding of the
proposed theory. We refer to [108, 10, 52] for a detailed introduction to convex optimization.

Convex Sets

We start with a definition of a convex set.

Definition 1. A set C is said to be convex if (1−λ)x+λy ∈ C for all x, y ∈ C and λ ∈ (0, 1).

In other words, a given set is convex if for each pair of elements the line segment connecting
them is also contained in the set (see Fig. 1.4). Half-spaces are important examples of convex
sets. For any non-zero d ∈ RN and any δ ∈ R, the closed half-spaces

{ x | 〈x, d〉 ≤ δ } { x | 〈x, d〉 ≥ δ }

as well as the open half-spaces

{ x | 〈x, d〉 < δ } { x | 〈x, d〉 > δ }

are convex.

Theorem 1. If C1, . . . , CM is a collection of convex sets, the intersection C =
⋂M

i=1Ci is
also a convex set.

Proof. For arbitrary x, y ∈ C and λ ∈ (0, 1), we have (1− λ)x+ λy ∈ Ci for all i = 1, . . . ,M
due to the convexity of the sets. Now, we can deduce (1− λ)x+ λy ∈ C.
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Corollary 1. Let di ∈ RN and δi ∈ R for i ∈ I, where I is an arbitrary index set. Then the
set

C = { x ∈ RN | 〈x, di〉 ≤ δi,∀i ∈ I }

is convex.

Proof. Let Ci = { x | 〈x, di〉 ≤ δi }. Then Ci is a closed half-space or RN or ∅ and C =⋂
i∈I Ci.

Of course, the conclusion would still be valid if some of the inequalities ≤ were replaced by
≥, < or >. The above statement is significant in practice and is exploited in Chapter 4.
Convex sets have many useful properties. In the following, we summarize some of the most
notable ones.

Property 1. If C is a convex set in RN , then so is every translate C + a = { x+ a | x ∈ C }.

Property 2. If C is a convex set in RN , then so is every scalar multiple λC = {λx |x ∈ C }.

Property 3. If C1 and C2 are convex sets in RN , then so is their sum C1 + C2, where

C1 + C2 = { x1 + x2 | x1 ∈ C1, x2 ∈ C2 }.

Property 4. If C is a convex set and λ1 ≥ 0, λ2 ≥ 0, then

(λ1 + λ2)C = λ1C + λ2C.

Each of these properties is easy to verify. Note that the last property is not valid for a general
set C.

Convex Functions

In this paragraph, we introduce convexity for functions. Even though we consider only func-
tions of the form f : RN → R for the sake of simplicity, the generalization of the presented
theory to a broader setting of functional analysis is straightforward. Note that a functional
over a domain of continuous surfaces boils down to a N -dimensional function after discretiza-
tion, where N gives the resolution of the underlying volume grid.

Definition 2. A function f : RN → R is called convex if for any x, y ∈ RN and λ ∈ (0, 1)

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y).

If we have a strict inequality, i. e. the sign ≤ is replaced by <, the function is called strictly
convex. Geometrically, the above definition states that the graph of a convex function lies
below the line segment connecting each two points on it.
Now, we come to the central property of convex functions, which makes their exploration so
attractive.

Theorem 2. For a convex function f : RN → R, each local minimum is also a global mini-
mum.
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convex function non-convex function

Fig. 1.5: Convex vs. non-convex functions. Left: For a convex function, each local minimum is also a
global minimum. As a consequence, each local optimization procedure gives a globally optimal solution
for a convex optimization problem. Right: A general non-convex function attains multiple different local
minima. Hence, the result of an optimization method highly depends on the initialization.

Proof. Let x ∈ RN be a local minimum of f . Then we have f(x) ≤ f(z) for any z in some
neighborhood U ⊂ RN of x. For any y ∈ RN , λx + (1 − λ)y ∈ U for λ < 1 sufficiently close
to 1, and since f is convex and x is a (local) minimizer

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y) ≥ f(x).

This implies f(x) ≤ f(y).

The above theorem is crucial in convex analysis (see Fig. 1.5). Basically, it states that each
convex optimization problem can easily be solved in a globally optimal manner. In particu-
lar, every local optimization procedure gives a globally optimal solution. This property has
theoretical as well as practical consequences. It substantially increases the robustness of the
underlying algorithms.
Next, we list some important properties of convex functions.

Property 1. A function f : RN → R is convex if and only if its epigraph

epif = { (x, µ) ∈ RN+1 | x ∈ RN , µ ≥ f(x) }

is a convex set.5

Property 2. Let f : RN → R be twice continuously differentiable. Then f is convex if and
only if the Hessian matrix

H(x) = (hij(x)), hij(x) =
∂2f

∂xi∂xj
(xi, . . . , xN )

is positive semi-definite for every x ∈ RN .

5. Since this property is equivalent to the presented definition of convexity, it could be used as an alternative
definition.
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Property 3. If f : RN → R is a convex function and φ : R → R is a non-decreasing convex
function, then g(x) = φ(f(x)) is convex on RN .

Property 4. If f1, f2 : RN → R are convex functions, then so is f1 + f2.

Property 5. The pointwise supremum of an arbitrary collection of convex functions is convex.

Property 6. Let f : C → R be a continuously differentiable function, defined on an open
convex set C ⊂ RN . Then, f is convex on C if and only if for all x, y ∈ C

f(y) ≥ f(x) +∇f(x)T (y − x).

Most of the aforementioned assertions are straightforward to prove. Note that Property 1
provides a link between convex sets and convex functions. Note also that Property 3, 4 and
5 pose constructs to build convex functions by means of others and thus extend the class.
Property 6 is very useful in practice. We will revert to it at a later stage.

Fenchel Duality

Definition 3. The conjugate of a function f : D ⊂ RN → R is the function f? : D → R,
defined by

f?(y) = sup
x∈D

{ 〈y, x〉 − f(x) }.

Note that according to the above definition, some values of f? may be infinite. We do not
consider this case here for the sake of simplicity and assume f?(y) < +∞. Again, we discuss
some properties of the conjugate function.

Property 1. The conjugate function is always convex.

Property 2. For a function f : RN → R and any x, y ∈ RN , the following inequality holds

〈x, y〉 ≤ f(x) + f?(y).

Property 3. For a function f : RN → R, f?? = f if and only if f is convex and semi-
continuous.

Property 4. The conjugacy operation is order-reversing. For functions f, g : RN → R, the
inequality f ≤ g implies f? ≥ g?.

Based on the above theory, we formulate the following

Theorem 3. For given functions f : E ⊂ RN → R and g : Y ⊂ RN → R and a linear
map A : E → Y let p, d ∈ R be primal and dual values defined, respectively, by the Fenchel
problems

p = infx∈E{ f(x) + g(Ax) }
d = supy∈Y { −f?(A?y)− g?(−y) }.

These values satisfy the weak duality inequality p ≥ d. If, furthermore, f and g are convex
and satisfy some technical conditions, then the values are equal, i. e. p = d.
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Fig. 1.6: Convex function over a convex domain. A constrained convex optimization problem involves
minimizing a convex function over a convex domain. A globally optimal solution to such a problem can
always be obtained.

This theorem is of great practical importance. It covers a broad range of cost functions,
frequently encountered in computer vision. Basically, the statement allows to convert a convex
minimization problem to an equivalent maximization one with the same extremal value. As a
consequence, the gap between both values provides information about the accuracy of a given
solution and could be used to formulate a stopping criterion in the optimization. In practice,
such a convergence condition is more reliable than traditional ones regarding the evolution step
or the function decay since it doesn’t depend on discretization and thus overcomes potential
numerical difficulties.

Constrained Convex Optimization

So far, we have considered general functions of the form f : RN → R. However, typical
cost functions encountered in practice are usually accompanied by a set of constraints which
restrict the domain of feasible arguments, i. e. f : C ⊂ RN → R. A minimization problem of
the form

min
x∈C

f(x),

where f : C → R is a convex function and C ⊂ RN is a convex set, is called a constrained
convex optimization problem (see Fig. 1.6). The globality properties previously discussed are
also valid in this case. It is easy to see that the generalization of Theorem 2 to functions over a
convex domain is straightforward. Yet, finding a globally optimal solution is more challenging
in this case since the minimizer may lie on the domain boundary.
There two aspects of paramount importance when dealing with an optimization problem
– existence and uniqueness of solutions. In the context of convex optimization, existence
is warranted if the domain set C is compact and the underlying function f is lower semi-
continuous, i. e. for each x ∈ RN

lim
y→x

inf f(y) ≥ f(x).

According to the definition of convexity, uniqueness is provided if f is strictly convex.
In order to handle constrained minimization problems, we need the term feasible direction.
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Definition 4. A vector d ∈ RN , d 6= ~0, is a feasible direction at x ∈ C if there exists α0 > 0
such that x+ αd ∈ C for all α ∈ [0, α0].

Now, we can formulate a sufficient condition for a global solution to a constrained convex
optimization problem

Theorem 4. Let f : C → R be a convex continuously differentiable function defined on the
convex set C ⊂ RN . Suppose the point x? ∈ C is such that for any feasible direction d at x?

we have
dT∇f(x?) ≥ 0.

Then, x? is a global minimizer of f over C.

Proof. Let x ∈ C, x 6= x?. By convexity of C

x? + α(x− x?) = αx+ (1− α)x? ∈ C

for all α ∈ (0, 1). Hence, the vector d = x − x? is a feasible direction at x?. By assumption,
we have

∇f(x?)T (x− x?) = dT∇f(x?) ≥ 0.

By using Property 6 of convex functions (see Section 1.3), we can conclude

f(x) ≥ f(x?) +∇f(x?)T (x− x?) ≥ f(x?).

The above condition is quite general but not practical for verifying a potential minimizer due
to the necessity for an exhaustive search.
In practice, a convex domain C is usually specified by a set of equality and inequality con-
straints. In such cases, we are confronted with the following minimization problem

f(x) → min

s. t. hj(x) = 0, j = 1, . . . ,m
gi(x) ≤ 0, i = 1, . . . , p,

where hj : RN → R, j = 1, . . . ,m and gi : RN → R, i = 1, . . . , p.6 In this case, more specific
conditions can be posed, known as Karush-Kuhn-Tucker (KKT) conditions.

Theorem 5. Let f : RN → R be a convex continuously differentiable function on the set of
feasible points

C = { x ∈ RN | hj = 0, gi ≤ 0, j = 1, . . . ,m, i = 1, . . . , p },

where hj : RN → R, j = 1, . . . ,m and gi : RN → R, i = 1, . . . , p are also continuously
differentiable and C is convex. Suppose there exist x? ∈ RN and λ1, . . . , λm, µ1, . . . , µp ∈ R
such that

• µi ≥ 0, i = 1, . . . , p

• ∇f(x?) +
m∑

j=1

λj∇hj(x?) +
p∑

i=1

µi∇gi(x?) = ~0

6. Note that the righthand side of all equality and inequality constraints is zero. This is not restrictive since
it can always be achieved by rearranging terms.
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•
p∑

i=1

µi gi(x?) = 0.

Then, x? is a global minimizer of f over C.

Proof. Suppose x ∈ C. By convexity of f , we have (see Property 6 in Section 1.3)

f(x) ≥ f(x?) +∇f(x?)T (x− x?).

We can rewrite this inequality by using the second condition in the theorem. We get

f(x) ≥ f(x?)−
m∑

j=1

λj∇hj(x?)T (x− x?)−
p∑

i=1

µi∇gi(x?)T (x− x?).

Now, we can observe that∇hj(x?)T (x−x?) = 0 for all j = 1, . . . ,m since each hj is constant on
C by definition. Hence, the second term in the above expression vanishes. We now claim that∑p

i=1 µi∇gi(x?)T (x−x?) ≤ 0. To see this, note that because C is convex, (1−α)x? +αx ∈ C
for all α ∈ (0, 1). Thus,

gi(x? + α(x− x?)) = gi((1− α)x? + αx) ≤ 0

for all α ∈ (0, 1) and i = 1, . . . , p. Summing over i, premultiplying each term by µi ≥ 0,
subtracting

∑p
i=1 µi gi(x?) = 0, and dividing by α, we get

p∑
i=1

µi gi(x? + α(x− x?))−
p∑

i=1

µi gi(x?)

α
≤ 0.

If we take the limit α→ 0, we obtain
∑p

i=1 µi∇gi(x?)T (x− x?) ≤ 0.
Finally, we can conclude

f(x) ≥ f(x?)−
m∑

j=1

λj∇hj(x?)T (x− x?)−
p∑

i=1

µi∇gi(x?)T (x− x?)

≥ f(x?)

for all x ∈ C, and the proof is completed.

Remark. The constants λj , j = 1, . . . ,m and µi, i = 1, . . . , p are called KKT multipliers. In
the special case p = 0, i. e. without inequality constraints, the KKT conditions boil down to
the well-known Lagrange condition and the KKT multipliers are equivalent to the Lagrange
multipliers.

In the following, we briefly present some basic numerical algorithms for solving constrained
convex optimization problems of the form f : C → R, where f is a continuously differentiable
convex function and

C =

{
x ∈ RN hj(x) = 0, j = 1, . . . ,m

gi(x) ≤ 0, i = 1, . . . , p

}
is a convex set. It should be noted that if the minimizer to be found is situated within
the interior of the domain, the problem can be handled by any method for unconstrained
optimization. Thus, appealing are only the cases when the minimizer lies on the boundary.
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Gradient Descent

Gradient descent is one of the simplest and most popular approaches for optimization. It is
based on the observation that the gradient of a continuously differentiable function points
in the direction of the steepest ascent. Hence, an iterative procedure following the opposite
direction leads to a minimizer. Yet, in the case of constrained optimization, we have to ensure
that all iterations are feasible while pursuing function decay in each step. It turns out that
in this case this can be achieved by simply backprojecting each intermediate estimate onto
the domain set C. Thus, we obtain the following gradient descent procedure for constrained
convex optimization: We start with some x(0) ∈ C and iterate for k ≥ 0

αk = arg minα>0 f(x(k) − α∇f(x(k)))

x(k+1) = ΠC(x(k) − αk∇f(x(k))),

where ΠC denotes projection onto the set C.7 The main strength of the above approach is
its simplicity which implies numerical stability and low memory requirements. Note that the
above scheme is completely iterative and no auxiliary variables, that need to be stored, are
involved. Its main weakness is, as in the case of unconstrained optimization, the slow speed
of convergence. Gradient descent is a typical first-order method.

Quasi-Newton Methods

Quasi-Newton methods, also called variable metric methods, can be considered as a general-
ization of the gradient descent method. They follow the iterative scheme

x(k+1) = x(k) + αkdk,

where αk ∈ R is a time-step whose value is chosen such that a reduction in f(x) is obtained.
The main feature of quasi-Newton methods is that the calculation of the evolution direction
dk depends on a matrix Bk that is forced to be positive-definite. When x(k) is close to the
required solution, Bk is usually set to an approximation of the Hessian of f . Away from
the solution, however, it is more beneficial to choose a matrix Bk that gives a good search
direction. In fact, quasi-Newton methods differ in the determination of the matrices Bk. In
the unconstrained case, the vectors dk are defined as

dk = −B−1
k ∇f(x(k)).

The positive definiteness8 of Bk implies that dk always gives a descent direction for f due to

∇f(x(k))Tdk = −∇f(x(k))TB−1
k ∇f(x(k)) < 0

unless ∇f(x(k)) = 0. One can observe that the value of dk is the one that minimizes the
quadratic function

Q(d) = f(x(k)) + dT∇f(x(k)) +
1
2
dTBkd.

Yet, we should keep in mind that we consider a constrained optimization problem and the
evolution direction dk, defined above, may not be a feasible direction. In this case, dk is

7. Note that the projection operator ΠC yields a unique result for a convex set C.

8. Recall that the inverse of a positive-definite matrix is also positive-definite.
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computed as the vector d that minimizes the quadratic function Q(d) subject to the linear
constraints

hj(x(k)) + dT∇hj(x(k)) = 0, j = 1, . . . ,m

gi(x(k)) + dT∇gi(x(k)) ≤ 0, i = 1, . . . , p,

which are approximations of the original constraints at the point x = x(k) + d. Thus, finding
a feasible evolution direction boils down to solving a convex quadratic programming problem.
It turns out that, also in the constrained case, requiring the matrices Bk to be positive-definite
is sufficient to guarantee correct convergence.
The main advantage of quasi-Newton methods is their superlinear rate of convergence which
makes them substantially faster than the classical gradient descent approach. Unfortunately,
they suffer from a notable limitation. They involve solving a constrained quadratic problem
in each minimization step, which could be as difficult as solving the original convex problem.
However, we will see that in certain cases there are possibilities to circumvent this computa-
tional burden. We refer to [107] and the references therein for more details on quasi-Newton
methods for constrained optimization.

Penalty Methods

The key idea behind penalty methods is to replace the constrained optimization problem by
a unconstrained one. The associated unconstrained problem is solved and the solution is used
as an approximation to the minimizer of the original problem. More precisely, the modified
minimization problem has the form

f(x) + γP (x) → min,

where γ ∈ R is a positive constant, called penalty parameter, and P : RN → R is called a
penalty function. Formally, a penalty function can be defined as follows.

Definition 5. A function P : RN → R is called a penalty function for the above constrained
optimization problem if it satisfies the following three conditions:

• P is continuous.

• P (x) ≥ 0 for all x ∈ RN .

• P (x) = 0 if and only if x is feasible, i. e. x ∈ C.

Clearly, for the above unconstrained problem to be a good approximation to the original
problem, the penalty function P must be appropriately chosen. Its role is to “penalize” points
outside the feasible set. Therefore, it should be defined in terms of the constraint functions
h1, . . . , hm, g1, . . . , gp. One standard choice is given by the so-called Courant-Beltrami penalty
function

P (x) =
m∑

j=1

(hj(x))2 +
p∑

i=1

(g+
i (x))2,

where

g+
i (x) = max(0, gi(x)) =

{
0 if gi(x) ≤ 0
gi(x) if gi(x) > 0.

Note that the above function is differentiable. Hence, derivative-based minimization schemes
can effortlessly be applied.
Recall that the derived unconstrained optimization problem provides only an approximate
solution to the original constrained one. The precision of the approximation depends not only
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on the penalty function P , but also on the penalty parameter γ. One would expect that the
larger the value of γ, the closer the approximated solution will be to the true solution as
points that violate the constraints are penalized more heavily. Ideally, in the limit γ → ∞,
the penalty method should yield the exact solution to the constrained problem. Yet, for
large values of γ some numerical difficulties occur since this leads to large gradients in the
optimization. This dilemma, which is hard to resolve, exhibits the main drawback of penalty
methods. On the positive side, penalty methods do not involve enforcing the associated
constraints in each iteration step, which is the reason for their high efficiency. Yet, the rate
of convergence is a delicate issue since the original problem is not solved directly but only in
an approximative manner. We refer to [23] for more details on penalty methods.

Primal-Dual Methods

Primal-dual methods have been devised for a specific class of convex functions, commonly
appearing in computer vision. While a variety of recent developments in this field exist [20],
here we concentrate on a general primal-dual formulation proposed in [102].
Before introducing the specific optimization problem, we start with some definitions. Let
A : X ⊂ RN → Y ⊂ RM be a continuous linear mapping and C ⊂ X, K ⊂ Y closed convex
sets. We consider the following saddle-point problem

min
x∈C

max
y∈K

〈Ax, y〉+ 〈g, x〉 − 〈h, y〉,

where g ∈ RN and h ∈ RM are constant vectors. We assume that the problem has at least
one solution (x̂, ŷ) ∈ C ×K and for any (x, y) ∈ C ×K, we have

〈A?y + g, x− x̂〉 − 〈Ax− h, y − ŷ〉 ≥ 0,

where A? denotes the adjoint of A. Then, the algorithm has the following form: We choose
(x(0), y(0)) ∈ C×K and let x̄(0) = x(0). We choose two time-steps τ, σ > 0 and iterate for k ≥ 0

y(k+1) = ΠK(y(k) + σ(Ax̄(k) − h))

x(k+1) = ΠC(x(k) − τ(A?y(k+1) + g))

x̄(k+1) = 2x(k+1) − x(k).

Note that the values of x̄(k) might not necessarily be in C. We refer to [102] for more details
on the choice of the time-step parameters τ and σ and a correctness proof. The variables x(k)

are called primal variables, whereas the y(k)’s are referred to as dual variables. Yet, the term
“duality”, used here, should not be mixed up with the term “Fenchel duality” defined in Sec-
tion 1.3. In essence, the above optimization scheme realizes gradient descent with respect to
the primal variable and gradient ascent with respect to the dual variable. The extrapolation
variable x̄(k) is used for correctness purposes and doesn’t have any impact on the speed of
convergence. This implies that primal-dual methods are also first-order methods.

We will encounter constrained convex optimization problems throughout this thesis and will
use and compare different numerical schemes to solve them. We will see that there is no
general recipe for solving constrained convex optimization problems. The various methods
exhibit different grade of suitability to the particular problems.
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1.4 Continuous vs. Discrete Optimization

Continuous and discrete optimization are branches in applied mathematics that have appeared
and emerged independently from each other. The continuous optimization approach expresses
the space of candidate solutions as real -valued combinations of a (finite or infinite) number of
basis solutions. In contrast, discrete optimization relies on a domain of integer -valued such
combinations. Moreover, the ranges of these integers must be finite. It is important to note
that continuous optimization can also be applied to discrete problems. In this context, the
obtained result has to be subsequently converted to the desired quantized form.
Obviously, the term “convexity” makes sense only in a continuous setting. Thus, the pre-
sented convex optimization poses a subdomain of the field of continuous optimization. In this
section, we extend our motivation for the exploration of convex formulations for 3D shape re-
construction by conducting a detailed comparison between a convex relaxation technique and
an established combinatorial counterpart in terms of discretization accuracy, computational
and memory requirements, and potential for parallel computing. It should be emphasized that
the goal here is not to highlight continuous optimization in favor of discrete optimization, in
general, but to show its better suitability to the problems handled in this thesis. The main
results of this evaluation are published in [65] and [72].
Let us consider the minimization of the following functional9

E(S) = λ

∫
int(S)

f(x) dx + ||S||, (1.5)

where S : Θ ⊂ R2 → V is a certain surface estimate lying within a volume V ⊂ R3, int(S) ⊂ V
denotes the surface interior and ||S|| – the surface area with respect to some norm ||.||.
Furthermore, f : V → R signifies a provided volume map reflecting the desired subdivision
and λ ∈ R is a weighting parameter. Conventionally, the first term in the above formulation is
called data term and the second one – smoothness term. The functional in (1.5) is of a quite
general form and covers a broad range of variational problems frequently encountered in shape
optimization. In fact, all energy models proposed in this work can be regarded as special cases
of (1.5) or involve solving subproblems that fit to this general form. Now, let’s concentrate
on the minimization of (1.5). There are two ubiquitous techniques for minimizing energy
functionals of this form in a globally optimal manner – graph cuts and convex relaxation.
Before introducing these two methods in more detail, we observe that the optimization of (1.5)
can be expressed as a binary labeling problem. In particular, we get the following equivalent
functional

E(u) = λ

∫
V
f(x) u(x) dx +

∫
V
||∇u|| dx

s. t. u : V → {0, 1}.
(1.6)

In the above formulation, the surface S is represented implicitly by means of a binary function
u, i. e. u = 1int(S), where 1int(S) denotes the indicator function of the surface interior. In
other words, u takes on the value 1 within the surface interior and 0 within the exterior region.
Hence, the gradient ∇u vanishes almost everywhere in V , except for the surface boundary,
where u jumps from 0 to 1 (or vice versa). Thus, the integral over the length of the gradient
∇u can be regarded as a measure for the surface area, which justifies the last term in (1.6).
Note that u is not differentiable at the surface boundary. In this respect, the gradient ∇u

9. Throughout this thesis, we will denote by E(.) the functionals that we minimize so as to emphasize their
physical interpretation as “energy”. Moreover, the terms “cost functional” and “energy functional” will
be used as synonyms.
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should be interpreted in a distributional sense. Generally, the last term in (1.6), known in
the literature as total variation (TV), has some very nice and useful properties which are
discussed in Appendix B in more detail. A function u : V → R is said to be of bounded
variation, and write u ∈ BV (V ), if its total variation is finite. Naturally, in practice we
always assume u ∈ BV (V ) in order to make the respective minimization problems meaningful.
Implicit representations are more flexible and tractable than explicit counterparts since they
don’t rely on a particular parametrization, but incorporate directly geometric properties of
the underlying shape. Moreover, they offer topological resilience and considerable numerical
stability. Implicit representations have attracted formidable attention since the popularization
of level set methods [29, 98]. The goal is now to minimize the functional in (1.6) on a
discretized volume grid Ṽ sampling V . Let

V = [v11, v12]× [v21, v22]× [v31, v32] ⊂ R3 (1.7)

with boundary values vlm ∈ R.10 Then, we can define

Ṽ =




v11 + i · v12 − v11

N1

v21 + j · v22 − v21
N2

v31 + k · v32 − v31
N3


i = 0, . . . , N1 − 1
j = 0, . . . , N2 − 1
k = 0, . . . , N3 − 1

 (1.8)

as a discretized version of V of resolution N1 × N2 × N3. Obviously, we have the relation
Ṽ ⊂ V . If N = N1 · N2 · N3 denotes the overall number of voxels, we end up with a binary
N -dimensional labeling problem.

Graph Cuts

The graph cut approach addresses the above labeling problem by constructing a directed
graph in form of a regular lattice representing Ṽ with nodes x̃. Thereby, each voxel corre-
sponds to a node in the lattice. Neighboring nodes are connected so as to approximate the
metric ||.|| measuring the boundary size of the surface S. A crucial point in this construction
process is that the degree of connectivity determines the accuracy of the metric approxima-
tion. Additionally, a source node s and a sink node t are introduced. They allow to include
the unary term f(x̃) u(x̃) for the voxel corresponding to x̃: If f(x̃) ≥ 0, an edge to the source
is created, weighted with f(x̃), otherwise – an edge to the sink weighted with −f(x̃). Thus,
the binary labeling problem of minimizing (1.5) boils down to finding a minimal s/t-cut in
the generated graph. An s/t-cut is a partitioning of the nodes into two sets S and T , where
S contains the source s and T the sink t. Nodes x̃ ∈ S are assigned the label u(x̃) = 0, nodes
x̃ ∈ T the label u(x̃) = 1. The weight of such a cut is the sum of the weights of all edges
starting in S and ending in T . It is important to note that the minimal cut can be found in
polynomial time with respect to the number of nodes in the graph, i. e. the volume resolution
N for the particular problem at hand.
Graph cuts have gained remarkable attention in recent years due to their generality and ability
to deliver globally optimal solutions (to discrete problems). Yet, a thorough introduction is
out of the scope of the current work. We refer to [47, 75, 11, 76] for more details.

10. For simplicity’s sake, we assume that the volume is axis-aligned. However, this is not restrictive since it
can always be achieved by applying an appropriate transformation in a pre-processing step.
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Convex Relaxation

The convex relaxation approach is inspired by the key observation that the functional in (1.6)
is convex, but it is defined over the non-convex domain of binary functions. This property is
exploited by extending the feasible set to functions taking on also intermediate values between
0 and 1, i. e. u : V → [0, 1], an operation called relaxation. This leads to a constrained convex
optimization problem that can efficiently be solved in a globally optimal manner based on the
theory in Section 1.3.

Proposition 1. The minimization of

E(u) = λ

∫
V
f(x) u(x) dx +

∫
V
||∇u|| dx

s. t. u : V → [0, 1]

poses a constrained convex optimization problem, i. e. we have a convex functional over a
convex domain.

Proof. For arbitrary u1, u2 : V → [0, 1] and α ∈ (0, 1), we obtain

E(αu1 + (1− α)u2) = λ

∫
V
f(x) (αu1(x) + (1− α)u2(x)) dx

+
∫

V
||α∇u1 + (1− α)∇u2|| dx

≤ α

(
λ

∫
V
f(x) u1(x) dx

)
+ (1− α)

(
λ

∫
V
f(x) u2(x) dx

)
+ α

∫
V
||∇u1|| dx+ (1− α)

∫
V
||∇u2|| dx,

where the last expression follows from the triangle inequality for the norm ||.||. Now, we can
conclude

E(αu1 + (1− α)u2) ≤ αE(u1) + (1− α)E(u2).

The convexity of the domain { u | u : V → [0, 1] } is due to the fact that it can be defined by
means of the inequality constraints u(x) ≥ 0 and u(x) ≤ 1 ∀ x ∈ V (see Corollary 1).

The above statement implies global optimizability of the relaxed problem. Yet, facing the
original “binary” minimization problem, it is not obvious if we could benefit from this fact.
Of course, the real-valued solution of the relaxed problem can easily be binarized via thresh-
olding, but it remains unclear if this would lead to a good estimate. Surprisingly, the simple
thresholding procedure turns out to be genuinely powerful in this context.

Theorem 6. Let u? : V → [0, 1] be a global minimizer of the functional in (1.6) over the
relaxed domain { u | u : V → [0, 1] }. Then, for almost any threshold µ ∈ (0, 1) the binary
function 1Σµ(u?) : V → {0, 1} with Σµ(u) = { x ∈ V | u(x) > µ } is also a global minimizer.

Proof. Using the layer cake representation of the function u? : V → [0, 1] (see [21])

u?(x) =
∫ 1

0
1Σµ(u?)(x) dµ,
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we obtain for the first term of E(u?)

λ

∫
V
f(x) u?(x) dx

= λ

∫
V
f(x)

∫ 1

0
1Σµ(u?)(x) dµ dx

= λ

∫ 1

0

∫
V
f(x) 1Σµ(u?)(x) dx dµ.

Furthermore, the coarea formula [121] can be used to express the TV-term of E(u?) as an
integral over the length of all level lines of u?, measured with respect to the norm ||.||∫

V
||∇u?|| dx

=
∫ 1

0
||∂Σµ(u?)|| dµ

=
∫ 1

0

∫
V
||∇1Σµ(u?)|| dx dµ,

where ∂Σµ(u?) denotes the boundary of Σµ(u?). Finally, plugging all together yields

E(u?) =
∫ 1

0
E(1Σµ(u?)) dµ.

Clearly, the functional is now merely an integral over the binary characteristic functions of
the upper level sets of u?. Now, we can deduce

E(u?) =
∫ 1

0
E(1Σµ(u?)) dµ ≥ min

µ∈(0,1)
E(1Σµ(u?)).

Since u? is assumed to be a global minimizer of E, this implies that the equality holds in the
above expression and 1Σµ0 (u?) is also a global minimizer, where

µ0 = arg min
µ∈(0,1)

E(1Σµ(u?)).

We can conclude that up to a null set the function E(1Σµ(u?)) is constant with respect to µ,
i. e. 1Σµ(u?) is a global minimizer of the functional in (1.6) for almost any µ ∈ (0, 1).

Remark. The theorem doesn’t preclude the existence of a discrete set in (0, 1) for which the
thresholding property is violated. Yet, if we assume that such a constant exists, this would
imply that the function 1Σµ(u?), regarded with respect to µ, jumps at this isolated point and
takes on its previous value again. In turn, this would imply the existence of different binary
functions u1, u2 : V → {0, 1}, i. e. u1 6= u2, with the same energy – E(u1) = E(u2). In fact,
this is extremely unlikely to occur in practice.

The above theorem, referred to as thresholding theorem in the literature, is central since it
allows for global optimizability of (1.6) via relaxation. In essence, it states that the mini-
mization of (1.6) boils down to solving a constrained convex optimization problem. Note that
any binary global minimizer of the relaxed problem is also a global minimizer of the original
problem (1.6) because the domain of binary functions is a subset of the domain of relaxed
functions. Finally, we end up with the following algorithm for globally optimizing (1.6) on
the given discrete volume grid Ṽ
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(1) Minimize E(ũ) on Ṽ subject to { ũ | ũ : Ṽ → [0, 1] }.

(2) Threshold the result ũrel with some µ ∈ (0, 1) to obtain
Σµ(ũrel) = { x̃ ∈ Ṽ | ũrel(x̃) > µ }.

(3) Derive a minimum of (1.6) as ũbin = 1Σµ(ũrel).

Obviously, step (1), which involves solving a constrained convex minimization problem, is
crucial. In order to avoid shifting the focus from the current comparative evaluation, we defer
details on the numerical optimization to subsequent chapters. Even though the thresholding
theorem is valid for (almost) any µ ∈ (0, 1), it is advisable to choose a threshold within
[0.1, 0.9] in step (2) to avoid possible numerical imprecisions.
Based on the seminal works [55] and [121], convex relaxation approaches were developed by
following two at first sight very different research directions – the continuous generalization
of graph cuts [5] and the generalization of level set methods [15]. Recently, these techniques
have attracted considerable attention and have been applied to a variety of computer vision
problems like image denoising [21], image segmentation [15], multiview 3D reconstruction [73]
and depth-map fusion [144].

Quantitative Comparison

A direct comparison of graph cut and convex relaxation methods introduced above reveals the
fundamental difference between both methodologies. Graph cuts follow a discrete philosophy
and quantize the cost functional at the beginning of the optimization process. Subsequently,
the obtained discrete problem is solved exactly. Convex relaxation techniques administrate
a continuous philosophy and postpone the discretization step as much as possible so as to
achieve high degree of accuracy. In fact, the underlying constrained convex optimization
problem could be solved in a continuous setting by using any of the approaches discussed in
Section 1.3. These conceptual differences entail certain practical consequences. In this para-
graph, we present a detailed quantitative comparison of the two techniques. In particular, we
focus on metrication accuracy, runtime and memory requirements.

Metrication Accuracy and Consistency. Critical for the minimization of a cost functional of
the form (1.6) is the realization of the smoothness term. In particular, important is the way the
utilized optimization scheme approximates the underlying metric ||.||. If the approximation is
poor, some geometric artifacts known as metrication errors appear in the reconstruction. In
contrast, an accurate approximation yields visually pleasant results and is genuinely effective
in suppressing noise.
We compare the metrication accuracy of both minimization methods in a synthetic experiment
shown in Figure 1.7. In order to promote quantitative evaluations, we rely on a scenario with
a known analytic solution – a bounded catenoid defined by

S(u, v) = (2 cosh
(v

2

)
cosu, 2 cosh

(v
2

)
sinu, v)T (1.9)

with (u, v) ∈ [0, 2π]× [−1, 1]. This minimal surface problem with given boundary constraints
can be simulated in the variational framework (1.6) by using the regional map f to determine
the base circles, i. e. the corresponding boundary slices in Ṽ , and defining f(x̃) = 0 for all
other voxels. In order to enforce the boundary conditions, we set λ = ∞. For the metric
||.||, we use the classical Euclidean metric, i. e. ||.|| ≡ |.|. The result of the convex relaxation
technique at a volume resolution of 180 × 180 × 60 is depicted in Fig. 1.7 (c) and the graph
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Fig. 1.7: Continuous vs. discrete minimal surfaces. (a) Graph cut reconstruction with a 6-neighborhood
system at a volume resolution of 180×180×60 (the highest in the plot). (b) Graph cut reconstruction with
a 26-neighborhood system at the same volume resolution. (c) Surface produced by the convex relaxation
technique. (d) Known analytic solution. (e) Deviation of the recovered surface from the analytic ground-
truth for increasing volume resolutions. The experiment demonstrates that graph cut solutions can indeed
be improved by reverting to larger neighborhood connectivity (26 instead of 6 neighbors). Yet, for any
connectivity there is a metrication error which persists with increasing resolutions. The continuous convex
relaxation method, on the other hand, is spatially consistent as the discretization error decays to zero.

cut solutions are illustrated in Fig. 1.7 (a) for the 6-connectivity system and in Fig. 1.7 (b)
for the 26-connectivity, respectively, and the same volume grid. The 6-connectivity involves
joining neighboring graph nodes only along the three coordinate axes while 26-connectivity
requires the inclusion of diagonal edges. Note that for rendering purposes as well as for further
processing, we convert the obtained binary labelings to continuous surface estimates. As can
be seen in the figure, the 6-neighborhood system completely fails to reconstruct the correct
surface topology in contrast to the full 26-neighborhood. Indeed, it can be shown that in-
creasing the graph connectivity leads to better approximations of the Euclidean metric [11].
Yet, even with the 26-neighborhood system discretization artifacts are clearly visible in terms
of polyhedral blocky structures. Furthermore, we can say that for a fixed connectivity struc-
ture the computed graph cut solution is not spatially consistent with respect to the volume
resolution in contrast to the solution of the convex relaxation method. This is demonstrated
in Fig. 1.7 (e), where for both optimization approaches the deviation of the estimated surface
from the analytic ground-truth is plotted for increasing spatial resolutions. The surface error
is measured in terms of the Hausdorff metric

ε =
∫

Strue

d(Strue(s), Snum)ds, (1.10)

where Strue and Snum denote the ground-truth and the computed numerical solution, respec-
tively, and d(x, S) is the distance from a point x to the nearest point on S. As expected, the
continuous approach produces shapes that converge to the analytic solution. In contrast, the
deviation of the graph cut generated surfaces contains a constant error that is independent of
the spatial resolution. Although the reached value can be improved by increasing the graph
connectivity, the discrete model will always exhibit an asymptotic behavior for a fixed graph
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graph cut reconstruction

reconstruction via convex relaxation

Fig. 1.8: Comparison between graph cuts and convex relaxation on the “dinoRing” data set. First row:
Graph cut reconstruction at volume resolution 2563. Second row: Surface generated with the convex
relaxation method at the same resolution. Both reconstructions are obtained by minimizing the same
instance of (1.6) (see Chapter 3 for details). The convex relaxation result exhibits visual improvements in
areas of noisy data due to the lack of texture or occlusions.

optimization connectivity completeness accuracy

graph cuts 6 99.2 % 0.44 mm

relaxation 6 99.4 % 0.43 mm

Tab. 1.1: Quantitative evaluation of the reconstructions in Fig. 1.8.

structure.
The above observations are further confirmed on a practical test scenario. In particular, we
provide an additional comparison on the “dinoRing” data set, that will frequently appear
throughout the thesis, shown in Fig. 1.8. The data set is part of an established multiview
stereo benchmark [112], allowing for quantitative evaluations, and will be presented in the
course of the work in more detail. We ran both optimization techniques for the same instance
of (1.6) at resolution 2563 obtained with the multiview stereo approach described in Chapter
3. At this point, we focus on the optimization and the particular definition of f as well as
the metric ||.|| can be considered as a black box. Only a graph structure of 6-connectivity
was used for the graph cuts due to memory restrictions. Note, however, that the convex
relaxation method also relies on a 6-neighborhood system in its numerical implementation to
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impose surface smoothness.11 At first glance, both reconstructions look similar. However,
a closer look reveals that the convex relaxation approach is more successful in suppressing
noise. This leads to visual improvements in areas of inaccurate data due to lacking texture or
erroneous occlusion handling. A quantitative evaluation of both reconstructions is shown in
Table 1.1. The numbers give accuracy (in mm) and completeness (in %). The completeness
score measures the percentage of points in the provided ground truth model that are within
1.25mm of the reconstructed model. The accuracy metric shown is the distance d that brings
90% of the reconstructed surface within d from some point on the ground truth. As expected,
the convex optimization manifests itself with some minor improvements. Recall that the basic
difference between both techniques consists in the realization of surface regularization. Hence,
it is not surprising that the overall quality of the reconstructions is determined by the accuracy
of the volume map f and the particular choice for the metric ||.||. The dilemma continuous
vs. discrete minimization becomes more relevant when the data term is underweighted, i. e.
for small values of λ. In case of noisy data for example, when surface smoothing becomes cru-
cial, a continuous PDE-based approach provides more resilience and accuracy than a discrete
counterpart.

Computational Time, Parallelizability and Convergence. In Table 1.2, we list the computa-
tional times for both optimization techniques for the two data sets. The graph cut method
is evaluated for the 26-neighborhood system only on the “catenoid” data set and not on the
“dinoRing” data set due to memory limitations. In our experiments, we used the publicly
available implementation of [75]. It is evident that the convex relaxation approach manifests
computational times similar to these of the graph cut optimization with 26-connectivity, but
substantially higher than those obtained with a 6-neighborhood. The CPU runtimes were
measured on a 2.66 GHz Intel QuadCore architecture.
Following recent progress in parallel computing and general purpose GPU programming, it is
intriguing if the compared techniques bear the potential to make use of it. The parallelization
of the convex relaxation method is straightforward and allows for an optimal exploitation
of all computational capabilities since it involves iteratively solving a PDE on a discrete
volume grid Ṽ . The parallelization of graph cut methods entails more difficulties. While a
lot of efforts were made to parallelize graph cut algorithms [119, 86, 131], there is usually
no theoretical guarantee that the overall runtime will be reduced for every problem instance
[46]. Moreover, even if an acceleration is achieved, the ratio between a single- and a multi-
thread implementation is far from optimal. Since there is no ultimate strategy for graph
cut parallelizations, we demonstrate the parallelizability of convex relaxation methods only.
Table 1.2 shows the respective GPU runtimes for the two data sets measured on a PC equipped
with a NVIDIA Tesla C2070 graphics card. Note the tremendous savings in computational
time. The notable deviation of the numbers for both data sets is due to the difference of the
optimized energy models, which requires different numerical schemes.
Along with the measured computational time, it is important to determine the convergence
properties of both optimization methods in a rigorous manner. Generally, graph cut algo-
rithms have an exact termination criterion and a guaranteed polynomial running time. On
the other hand, the convex relaxation approach is based on an iterative procedure whose
termination is hard to predict. While the required number of iterations is typically size-
independent (leading to a computation time which is linear in the number of voxels), one
cannot speak of a guaranteed polynomial time complexity.

11. In fact, the relaxed problem can be solved in different ways (see Section 1.3). Yet, in all cases, the
underlying differential operators involve only partial derivatives along the canonical coordinate axes.
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data set optimization connectivity runtime

catenoid graph cuts (CPU) 6 13 s

catenoid graph cuts (CPU) 26 755 s

catenoid relaxation (CPU) 6 576 s

catenoid relaxation (GPU) 6 4 s

dino graph cuts (CPU) 6 41 s

dino relaxation (CPU) 6 577 s

dino relaxation (GPU) 6 1 s

Tab. 1.2: Runtimes for the reconstructions in Fig. 1.7 and 1.8.

Memory Consumption. Finally, we compare the graph cut and the convex relaxation method
with respect to their memory consumption. According to this criterion, the continuous ap-
proach is the clear winner: It requires only one floating point value for each voxel in Ṽ . In
contrast, graph cut methods require an explicit storage of edges as well as one float value
for each edge. This issue becomes especially important for high volume resolutions. For the
two demonstrated experiments the measured difference in memory consumption was about a
factor of 20 (for 6-connected graph cuts).

Conclusion. In summary, we briefly list the discussed strengths and weaknesses of both opti-
mization techniques. Graph cuts are relatively fast and entail a polynomial time guarantee,
but suffer from metrication errors, lack of optimal parallelizability and high memory require-
ments. Convex relaxation methods could be a little slower, but offer perfect parallelizability.
Moreover, they always compute an accurate and spatially consistent solution. Yet, a small
drawback is the absence of any rigorous convergence guarantees, even though this is not criti-
cal in practice. Generally, continuous convex relaxation methods seem to bear more potential
in the long run for time- and memory-consuming applications involving shape optimization,
which makes them particularly suitable for the problems tackled in this work.

1.5 Thesis Outline

The thesis is focused on applying the theory of convex optimization to the fields of image-based
modeling and 3D segmentation. As previously mentioned, both problems are closely related
since, in a volumetric formulation, both of them boil down to a voxel labeling problem. Yet,
image-based modeling entails more difficulties regarding data term calculations which involve,
for example, visibility estimation and matching of different image points or patches. For that
reason, we pay more attention to multiview 3D reconstruction considered in Chapters 2, 3, 4
and 5. Chapter 6 is devoted to 3D segmentation.

• Chapter 2 presents an interactive approach for color-based multiview 3D reconstruction.
Although it can be classified as a shape-from-silhouette method, the proposed formula-
tion significantly differs from that of classical ones. Instead of segmenting each image
separately in order to construct a 3D surface consistent with the extracted silhouettes,
we compute the most probable 3D shape that gives rise to the observed color infor-
mation. The probabilistic framework, based on Bayesian inference, enables robust 3D
estimation by optimally taking into account the contribution of all views. Subsequently,
the derived MAP estimation is cast as a convex energy minimization problem.
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• In Chapter 3, we show that multiview stereo can be formulated in a convex manner. In
particular, we study three energy models which are based on a common variational tem-
plate unifying regional subdivision terms and on-surface photoconsistency. The three
models use data measurements at increasing levels of sophistication. While the first two
approaches are based on a classical silhouette-based volume subdivision, the third one
relies on stereo information to define regional costs. Furthermore, the proposed propa-
gating scheme is exploited to compute a precise photoconsistency measure as opposed
to the classical estimation. The third model, which gives the most accurate results, is
explored qualitatively and quantitatively in more detail.

• Chapter 4 addresses the problem of multiview stereo and silhouette integration. Thereby,
the stereo information affects the underlying cost functional and silhouette consistency is
imposed by means of convex constraints restricting the domain of feasible shapes. After
relaxation, a constrained convex optimization problem is obtained whose solution is
binarized via appropriate thresholding retaining the silhouette consistency of the result.
Even though the original problem is not solved in a globally optimal manner, we show
that the estimated surface lies within an energetic bound within the optimal one.

• Chapter 5 extends the class of convex energy models by including an anisotropic metric,
which allows to integrate surface normal information, and by replacing the traditional
linear variational formulation by a ratio model avoiding some of its shortcomings. The
derived anisotropic generalization retains all globality guarantees of isotropic counter-
parts. The proposed ratio functional is minimized in a globally optimal manner by
solving a sequence of convex optimization problems. Moreover, we discuss and demon-
strate some important properties of minimal ratio models – absence of a shrinking bias
and scale invariance.

• Chapter 6 is devoted to the 3D segmentation problem. We propose an energy model
fusing various cues like regional intensity subdivision, edge alignment and orientation
information. Although the presented approach is designed with focus on a particular
application at hand – vesicle membrane reconstruction from fluorescence imaging – it is
general enough to be applied to a variety of different segmentation tasks.

• Chapter 7 summarizes the main contributions of the thesis and outlines future research
directions.



2 Interactive Color-Based Multiview
Reconstruction

Not all who wander are lost.

John Tolkien (1892-1973)

In this chapter, we start the exposition of image-based modeling with one of the simplest and
most popular modalities – shape from silhouettes.

2.1 Introduction

Motivation

The earliest approaches for multiview 3D reconstruction, dating back to the 1970’s, use out-
lines to infer geometrical structure. While silhouette-based methods are not capable of retriev-
ing surface concavities, since these do not affect the image projections, they come along with
some important advantages and are often preferred in applications like robot navigation and
tracking. Firstly, they enjoy significant stability and efficiency, which allows them to operate
in challenging imaging conditions. Secondly, they seem to be the only reasonable alternative
for recovering textureless or homogeneous objects. Thirdly, they usually do not require exact
visibility estimation. This is a great advantage over multiview/photometric stereo and shad-
ing techniques, where visibility reasoning leads to a chicken-and-egg problem. Moreover, as
we will see later in the thesis, silhouette-based methods can provide useful initial solutions
that can be refined with other techniques.
Usually, silhouettes are used to infer surfaces in a two step process: an individual decision
about pixel occupancy is made on a per-view basis, then geometrical structure is inferred
from all estimated segmentations. Unfortunately, the automatic segmentation of individual
images is in many cases not feasible, especially in the presence of noise, illumination variations
and background clutter. A straightforward strategy to address this difficulty is to rely on
interactive input from the user to guide the process by manually labeling image regions.
While two scribbles marking foreground and background are usually sufficient for simple
images, the extent of required user interaction increases significantly in case of cluttered or
camouflaged environments. This problem becomes more relevant if we consider a collection of
input images, where even a modest amount of user interaction on an individual image basis
entails significant efforts. Applying image segmentation methods leads to a two-step silhouette
fusion procedure, where binary image labelings are first computed separately and combined
subsequently to build a unified 3D model. Yet, this simple scheme is suboptimal in the sense
that the segmentation of each individual image does not take into account information from
the remaining imagery. Thus, it is beneficial to design an interactive approach which exploits
the fact that all input views capture the same scene in order to counteract possible inaccuracies
in single observations (see Fig. 2.1).

29
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Fig. 2.1: Surprisingly accurate reconstructions can be obtained from a few scribbles marking foreground
and background in only one of the input images of a sequence. Such an approach is in contrast to
classical shape-from-silhouette methods, where all silhouettes are extracted explicitly in advance, which
entails considerable interactive efforts.

Previous Work

Historically, the main strategy for computing a silhouette-consistent shape was to directly
implement the intersection of visual cones corresponding to different silhouettes [8]. Such
techniques aim at estimating the object’s visual hull, i. e. the largest shape that yields the
same silhouettes as the observed ones [79]. An important class within this domain exhibit
volumetric approaches. The key idea is to discretize the space by a fixed voxel grid and
label each voxel as opaque or transparent according to its projections onto the images. An
early paper reporting a volumetric approximation of the visual hull is due to Martin and
Aggarwal [91]. Subsequently, octree-based representations were employed by [106, 123] in
order to increase the efficiency.
Probabilistic methods for multiview silhouette fusion were proposed in the context of model-
free tracking [38, 48]. However, since they are based on background subtraction, they require
special environmental conditions and are not directly applicable to the problem of joint color-
based segmentation and reconstruction from real-world image sequences.
Along with shape from silhouette techniques, researchers advocated the use of theoretically
more transparent energy minimization methods which compute directly a 3D shape consistent
with all images [141, 117, 17, 18]. In [141] the sought-after 3D surface is modeled in a
variational sense by minimizing the reprojection error between estimated object texture and
observed colors. Thus, the following energy functional is being minimized

E(S) =
n∑

i=1

∫
πi(S)

|f − Ii(z)|2 dz +
n∑

i=1

∫
Ωi\πi(S)

|g − Ii(z)|2 dz, (2.1)

where f, g ∈ R3 denote the colors of foreground and background, respectively. The values of
f and g can be estimated in advance or updated during the minimization of S. πi(S) ⊂ Ωi

signifies the projection of S in image i. Note that rather than regularizing the boundary
of individual segmentations, the variational formulation in (2.1) allows to directly impose
regularity of the estimated 3D model. Yet, one of the difficulties with such energy minimization
methods is that respective functionals are not convex. Therefore, the proposed gradient
descent optimization is likely to get stuck in a local minimum, especially in case of a complex
object topology. The aspect that typically prevents global optimizability of functionals like
(2.1) is the fact that the observed projections cannot be inverted and therefore do not allow
a direct inference of voxel occupancy. They merely allow statements about the collection
of voxels along respective lines of sight. This difficulty can be circumvented by measuring
costs in 3D space rather than on the image plane [117, 17, 18]. This leads to the following
formulation

E(S) = λ

∫
int(S)

ρobj(x) dx +
∫

S
ds, (2.2)
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where λ ∈ R is a weighting parameter, int(S) ⊂ V denotes the interior of S and ρobj : V →
{−1, 1} is defined as

ρobj(x) =
{
−1, if πi(x) ∈ Sili ∀i = 1, . . . , n
1, otherwise.

(2.3)

The energy model in (2.2) can be regarded as a regularized version of classical visual hull
formulations, but it still requires binary view segmentations, which makes the approach sus-
ceptible to noise in individual observations. A more general algorithm, that operates directly
on image color information, was proposed in [17, 18]. It involves minimizing a cost functional
of the form

E(S) = λ

∫
int(S)

(φ− Pobj(x)) dx +
∫

S
e−β·Z(s) ds, (2.4)

where λ, β ∈ R and φ ∈ [0, 1] are parameters, and the function Z : V → R is defined as

Z(x) = max
i∈{1,...,n}

∑
c∈{r,g,b}

|∇Ic
i (πi(x))|2. (2.5)

Thereby, Ir, Ig and Ib denote the three color channels of image I. Moreover, the probability
map Pobj assigns each point in space x ∈ V a likelihood for lying in the interior of a silhouette-
consistent shape. It is computed by estimating color models for object and background and
averaging over all provided observations. Although the model in (2.4) offers significant im-
provements over classical silhouette fusion techniques, the applicability of its implementation
proposed in [17, 18] is limited. Firstly, the method does not allow for efficient user interaction
on a single image. It either runs without any user intervention, which is unreliable in many
cases, or it requires interaction in all views in order to build separate background models.
Secondly, the method is quite slow (computational times up to a couple of hours) and sequen-
tial in nature, which entails the lack of parallelization potential. In this respect, additional
difficulties are caused by the employment of graph cut optimization, the parallelization of
which is also not straightforward as we saw in Section 1.4.
User interaction is an established tool for segmenting individual real-world images. The
pioneering work [13] addresses the foreground/background interactive segmentation in still
images via max-flow/min-cut energy minimization. The energy balances between likelihood
of pixels belonging to the foreground and the edge contrast imposing regularization. The
user-provided scribbles collect statistical information on pixels and serve additionally as hard
constraints. The GrabCut [9, 109] framework further simplifies the user interaction required.
It allows for interactively adding scribbles to improve the initial segmentation. Full color
statistics are used, modeled as mixtures of Gaussians, and these are updated as the segmen-
tation progresses. Further developments led to the utilization of weighted geodesic distances
to the information supplied by the user [35, 7]. Recent advances in convex optimization ini-
tiated the appearance of [128], where total variation minimization is adopted to interactive
image segmentation. Yet, all of these methods are restricted to individual image segmenta-
tion. They are unable to adequately process collections of images capturing the same scene,
where the interdependence between different observations is crucial. This drawback motivated
the development of image cosegmentation [111] - a framework exploiting the overlapping in
content of two or more images with the goal of improving the segmentation results. While
the current work is inspired by a similar incentive, there is one important difference - in our
case the images are calibrated, which is an additional source of information and allows for a
more accurate modeling of the interconnection between different observations.
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Furthermore, researchers adapted interactivity to video segmentation [135, 85]. In this con-
text, additional improvements are obtained by imposing time coherency, under the assumption
that the changes between successive frames are minor. However, the generalization of such
approaches, to make them applicable to the problem of segmenting collections of still pho-
tographs imaging the same scene, remains an open challenge.

Contribution

In this chapter, we propose a probabilistic treatment of the shape-from-silhouette problem.
Instead of processing the input images independently and subsequently fusing the resulting in-
formation, we compute the most probable surface that gives rise to the given observations. To
this end, we adopt a volumetric approach, where we assign to each voxel probability costs for
being inside or outside the imaged shape. Color distributions for foreground and background
are estimated from user interactions in the form of a few scribbles in only one of the input
images. We avoid explicit visibility reasoning by initially neglecting the interdependence of
voxels and reintroducing it in a probabilistic manner at a later stage of the modeling. The
consequence of this approximation is that the resulting Bayesian inference problem can be
optimized globally. In particular, we employ convex relaxation techniques to find the exact
solution. In numerous experiments, we demonstrate that the proposed probabilistic formu-
lation provides far more robust reconstructions than the classical silhouette fusion method
[8, 79]. Furthermore, we show dramatic improvements of individual image segmentations by
exploring multiview coherency criteria. It is important to notice that the proposed framework
is general and can be used in combination with any probabilistic model for image inference.
The main results in this chapter are published in [66, 67].

2.2 Probabilistic Volume Intersection

3D Shape Modeling via Bayesian Inference

We consider the problem of probabilistic voxel labeling from a series of calibrated images of
a scene. The relationship between image observations and surface estimation is established
in terms of Bayesian inference, which allows to derive a MAP estimate for the sought-after
3D surface by modeling the process of image formation. The probabilistic framework covers
a wide range of noise sources like camera sensor perturbance, surface reflections, erroneous
camera calibration etc. All these effects have as a result that observed colors deviate from the
expected ones. In the following, the proposed probabilistic formulation is explained in more
detail.
Here, we revert to the notations in Chapter 1. In particular, V ⊂ R3 denotes a continuous
volume encompassing the object of interest and Ṽ ⊂ V a discretized version defined in (1.8).
Given the set of views, we are looking for the most probable surface Ŝ that gives rise to the
provided image observations, that is

Ŝ = arg max
S∈Λ

P (S | {I1, . . . , In}), (2.6)

where Λ = { S | S : Θ ⊂ R2 → V } is the set of all closed surfaces lying inside the volume V .
By means of the Bayes formula, we obtain

P (S | {I1, . . . , In}) ∝ P ({I1, . . . , In} | S) · P (S), (2.7)

where the a priori probability P (S) allows to introduce preference to a certain class of surfaces
possessing desired properties like smoothness, simple topology etc. It should be noted that
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the constant term
1

P ({I1, . . . , In})

has been omitted in the above expression since it does not influence the shape retrieval process.
A crucial issue in this formulation is the modeling of the likelihood P ({I1, . . . , In} | S). It
reflects the image formation process in terms of the probability for observing images I1, · · · , In,
provided a surface estimate S. To this end, we could rely on the simple and straightforward
assumption that observations of separate voxels are independent from each other and only
their projections onto the images influence their state. This leads to factorization over the
entire volume

P ({I1, . . . , In} | S) ≈

∏
x̃∈Ṽ

P ( {Ii(πi(x̃))}i=1,...,n | S)

dx̃

, (2.8)

where the exponent dx̃ denotes the discretization step and plays the role of a normalizer.
It is introduced to ensure the correct continuum limit and make the expression invariant
to refinement of the grid. In practice, the probability values are usually smaller than 1.
Hence, the above product will tend to zero for increasing volume resolutions as the number
of multipliers will grow. For example, if we double the number of voxels, the product will be
generally raised to the power of 2. The effect of this modification will be neutralized by the
exponent dx̃ which will be halved.
In fact, the independence assumption is not fulfilled since the appearance of a voxel can be
affected by other voxels in the line of sight. However, we neglect this interdependence at this
point and reintroduce it at a later stage of the modeling process.1

According to a certain surface estimate S, the voxels can be divided into two classes: lying
inside an object or belonging to the background. Hence, the volume V can be expressed as
V = int(S)∪ext(S), where int(S) denotes the surface interior and ext(S) the exterior region,
respectively. Analogously, we obtain for the discrete counterpart Ṽ = ˜int(S) ∪ ˜ext(S), where
˜int(S) and ˜ext(S) are discretized versions of int(S) and ext(S). Considering this partitioning,

we can proceed with

P ({I1, . . . , In} | S) ≈ ∏
x̃∈ ˜int(S)

P ( {Ii(πi(x̃))}i=1,...,n | x̃ ∈ ˜int(S))

dx̃

·

 ∏
x̃∈ ˜ext(S)

P ( {Ii(πi(x̃))}i=1,...,n | x̃ ∈ ˜ext(S))

dx̃

.

(2.9)

To simplify the notation, we denote

Pobj(x̃) = P ( {Ii(πi(x̃))}i=1,...,n | x̃ ∈ ˜int(S))
Pbck(x̃) = P ( {Ii(πi(x̃))}i=1,...,n | x̃ ∈ ˜ext(S))

(2.10)

for x̃ ∈ Ṽ (see Fig. 2.2). Now, plugging the results in (2.7) and (2.9) into (2.6) gives the

1. The weaker assumption of a factorization not over all voxels but merely over all lines of sight gives rise to
a cost functional with integrals over all image domains as suggested in [141]. While this approximation is
more faithful, it does not lead to a globally optimizable cost functional and does not entail uniqueness of
solutions.
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(x)P , P (x)obj bck

probabilistic volume foreground probability background probability
intersection map Pobj map Pbck

Fig. 2.2: Probabilistic volume intersection. Left: Two probabilities Pobj , Pbck are assigned to each voxel
explaining its projections onto the images with respect to the provided color models for foreground and
background, respectively. Right: Slices through the probability maps Pobj and Pbck for the “bunny”
sequence (see Fig. 2.6).

following expression

Ŝ = arg max
S∈Λ

 ∏
x̃∈ ˜int(S)

Pobj(x̃)

dx̃

·

 ∏
x̃∈ ˜ext(S)

Pbck(x̃)

dx̃

· P (S). (2.11)

Note that Pobj(x̃) and Pbck(x̃) defined in (2.10) do not represent the probability that x̃ is part
of object or background, but rather the probability for observing certain colors in respective
projections given that x̃ is part of the object or the background. In particular, this implies that
for an arbitrary x̃ ∈ Ṽ these probabilities will generally not sum to 1. This is an important
point in the modeling process since it allows to use two different color distribution models for
foreground and background instead of a single one.

Joint Probabilities

Now, we are confronted with the question of how to compute the joint probabilities given
in (2.10). Such a computation involves fusing hypotheses stemming from different views. A
straightforward way to accomplish this task is to assume again independence of the image
observations. Taking visibility into account, we note that the probability of a voxel being part
of the foreground is equal to the probability that all cameras observe this voxel as foreground,
whereas the probability of background membership describes the probability of at least one
camera seeing background. This formulation can be regarded as the probabilistic analog
to classical silhouette carving techniques, where a voxel is set transparent if it projects on
background in at least one of the input images. Note that this is a conceptual difference
to explicit visibility estimation, where the current surface determines the state of each voxel
[141]. Following this train of thoughts, we obtain the formulation

Pobj(x̃) =
n∏

i=1

P (Ii(πi(x̃)) | x̃ ∈ ˜int(S))

Pbck(x̃) = 1−
n∏

i=1

[
1− P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S))

]
.

(2.12)

The asymmetry in both expressions is due to the fact that they describe different types
of events. The expression for Pobj(x̃) relies on the assumption that the observed object is
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completely visible in all of the images, i. e. no obstacles block the field of view of the cameras
to it. The overall foreground score can then be obtained by simple multiplication of all image
votes. The term Pbck(x̃) requires more care regarding the fact that a background voxel could
be occluded in some of the images by the object itself. Hence, a simple multiplication of the
single probabilities will not work. Instead, we revert the foreground evidence of the individual
image responses with respect to the background model. In this sense, the interdependence of
voxels neglected in (2.8) is now reintroduced.
A closer look at equation (2.12) reveals that it contains a bias with respect to the number
n of images. Since the individual observation probabilities P (Ii(πi(x̃)) | x̃ ∈ ˜int(S)) and
P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S)) are both bounded by 1 and typically smaller than 1 for realistic
scenarios, Pobj(x̃) (and Pbck(x̃)) would tend to zero (or one) for n→∞. This bias disappears
if we consider each camera separately to approximate Pobj(x̃) and Pbck(x̃)

Pobj(x̃) ≈ P (Ii(πi(x̃)) | x̃ ∈ ˜int(S)) ∀ i
1− Pbck(x̃) ≈ 1− P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S)) ∀ i,

(2.13)

and subsequently compute the geometric mean as an average score, yielding

Pobj(x̃) = n

√√√√ n∏
i=1

P (Ii(πi(x̃)) | x̃ ∈ ˜int(S))

Pbck(x̃) = 1− n

√√√√ n∏
i=1

[
1− P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S))

]
.

(2.14)

A direct comparison to (2.12) shows that the proposed model results in a normalizing root
being introduced, which makes both expressions invariant to the number of cameras. The use
of geometric mean is motivated by the nature of the fusion process. For example, if one camera
supplies a weak evidence for foreground membership (i. e. P (Ii(πi(x̃)) | x̃ ∈ ˜int(S)) ≈ 0),
this will immediately decrease the overall product and therewith the final value for Pobj .
Analogously, a strong background response (i. e. P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S)) ≈ 1) of one of
the cameras will drastically bring the value of Pbck closer to 1. This coincides with the
classical visual hull computation, where a voxel is classified as background if at least one of
its projections is inside a background region.
The probability for observing a certain color value in a given image can be modeled by a
parametric distribution such as multivariate Gaussian

P (Ii(πi(x̃)) | x̃ ∈ ˜int(S)) ∼ N (µobj ,Σobj)
P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S)) ∼ N (µbck,Σbck)

(2.15)

in sRGB color space. Here, µobj , µbck denote the mean vectors and Σobj , Σbck the covari-
ance matrices of both regions. As previously mentioned, the parameters of the color distri-
butions are determined interactively by requiring the user to mark object and background
regions via scribbles in one of the input images (see Section 2.4). Note that N (µobj ,Σobj) and
N (µbck,Σbck) stand for continuous density functions. In order to derive corresponding prob-
ability values, a normalization over the entire discretized color space has to be performed.
This step is important as it guarantees that the values for P (Ii(πi(x̃)) | x̃ ∈ ˜int(S)) and
P (Ii(πi(x̃)) | x̃ ∈ ˜ext(S)) are within the unit interval [0, 1] and validates the formulation in
(2.14). Example probability maps Pobj and Pbck are depicted in Fig. 2.2. Note that the
probability for foreground evidence is quite blurry while that of the background region is
more distinct. This is due to the nature of the silhouette fusion scheme (see (2.14)). As
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the foreground probability map Pobj is estimated by simply averaging the single observation
probabilities, the obtained values are diluted. In contrast, one high observation probability
with respect to the background model would immediately result in a high value for Pbck.
It should be noticed that the proposed probabilistic framework is quite general and does not
rely on any inherent assumptions about particular modeling of the observation probabilities
like (2.15).

2.3 MAP Estimation via Energy Minimization

Variational Formulation

Now, we come to the question of how the MAP estimation problem in (2.11) can be solved.
It can be converted to an equivalent energy minimization problem and can be solved exactly
by means of established convex relaxation techniques.
A standard approach to achieve that is to apply the negative logarithm, which converts the
maximization problem in (2.11) to a minimization one. In a continuous setting, this yields

E(S) = −
∫

int(S)
logPobj(x) dx

−
∫

ext(S)
logPbck(x) dx− logP (S)

Ŝ = arg min
S∈Λ

E(S).

(2.16)

Minimizing the above energy functional is equivalent to maximizing the total a posteriori
probability of all voxel assignments. In the spirit of energy minimization, the first two terms
can be interpreted as external costs and measure the discrepancy between image observations
and projections predicted by the model. The last term exhibits internal energy costs and
summarizes prior knowledge on the surface geometry. In order to handle image perturbances
like sensor noise, imprecise camera calibration and background clutter, this term is usually
used to impose spatial smoothness of the recovered surface. From a theoretical point of view,
a regularization term is often needed to guarantee uniqueness of solutions [95]. This can be
achieved by setting

P (S) = e−ν|S|, (2.17)

where ν is a weighting constant and |S| denotes the Euclidean surface area. The Euclidean
metric could be replaced by a more general Riemannian metric so as to impose image edge
alignment for example [61, 17]. Yet, edge responses are provided separately by individual
observations and could degrade the reconstructions, especially in case of noisy or cluttered
image data. For that reason, we relied on the simple Euclidean metric in our regularization
criterion. It should be mentioned that the a priori model in (2.17) introduces a minimal surface
bias even though it achieves a high degree of smoothness. Alternatively, higher-order shape
characteristics like curvature could be used instead, but this would make the optimization
much more challenging. To the best of our knowledge, up to date there is no approach
allowing global minimization of curvature in 3D. The choice of the minimal surface model in
(2.17) is motivated by its simplicity and global optimizability, as well as its high efficiency in
suppressing noise. By plugging (2.17) into the functional in (2.16), we finally obtain

E(S) = −
∫

int(S)
logPobj(x) dx

−
∫

ext(S)
logPbck(x) dx+ ν|S|.

(2.18)
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Our goal is to minimize this functional.

Numerical Optimization

At the core of the minimization of the functional in (2.18) is the observation that it can be
recast equivalently in a convex form.
The first step is to represent the surface S implicitly by the characteristic function u : V →
{0, 1} of int(S), i. e. u = 1int(S) and 1 − u = 1ext(S). In this way, we obtain the following
constrained non-convex energy minimization problem corresponding to (2.18)

E(u) =
∫

V
log

Pbck(x)
Pobj(x)

u(x) dx + ν

∫
V
|∇u| dx→ min,

s. t. u ∈ {0, 1} .
(2.19)

It is easy to see that the minimization problem in (2.19) is equivalent to

E(u) =
1
ν

∫
V

log
Pbck(x)
Pobj(x)

u(x) dx +
∫

V
|∇u| dx→ min,

s. t. u ∈ {0, 1} .
(2.20)

Now, it is essential to observe that the problem in (2.20) is a special case of the one in
(1.6). Hence, the convex relaxation technique proposed in Section 1.4 can be leveraged. In
particular, we obtain the following

Theorem 7. Let u? : V → [0, 1] be a global minimizer of the functional in (2.20) over the
relaxed domain { u | u : V → [0, 1] }. Then, for almost any threshold µ ∈ (0, 1), the binary
function 1Σµ(u?) : V → {0, 1} with Σµ(u) = { x ∈ V | u(x) > µ } is also a global minimizer.

Proof. The above statement can be inferred directly from Theorem 6 and the fact that the
functional in (2.20) is a special case of the one in (1.6).

Thus, solving the minimization problem in (2.20) boils down to minimizing the respective
functional within the domain of relaxed functions u : V → [0, 1], which poses a constrained
convex optimization problem, and subsequently thresholding the result. In the sequel, we
focus on numerical considerations. To this end, we adapt a primal-dual approach.
One can notice that the energy functional in (2.20) can be written in the form

E(u) =
1
ν

∫
V
fu dx +

∫
V
|∇u| dx, (2.21)

where f : V → R summarizes the constant part not dependent on u, i. e.

f = log
Pbck(x)
Pobj(x)

.

We proceed by switching to a dual formulation of the total variation regularizer by means of
an auxiliary variable ξ : V → R3, which allows for the following conversion

E(u) =
1
ν

∫
V
fu dx +

(
sup
|ξ|≤1

∫
V
〈ξ,∇u〉 dx

)
. (2.22)

Now, we obtain a new functional

E(u, ξ) =
1
ν

∫
V
fu dx +

∫
V
〈ξ,∇u〉 dx (2.23)
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stereoscopic segmentation [141] proposed approach

Fig. 2.3: Tori sequence. Left: 2 out of 20 synthetic input images of resolution 640 × 480. Middle:
Multiple views of the reconstruction with stereoscopic segmentation [141]. Right: Corresponding views
of the reconstruction obtained by the proposed approach. Both methods were initialized with a sphere
enclosing the objects. While stereoscopic segmentation gets stuck in a local minimum and completely fails
to capture the correct topology, the presented probabilistic fusion scheme accurately recovers the imaged
geometry.

that should be minimized with respect to u and maximized with respect to ξ under the
constraints u ∈ [0, 1] and |ξ| ≤ 1. This states a typical saddle point problem that can be solved
by a projected gradient descent/ascent strategy. Denoting by Crel = {u | u : V → [0, 1]} the
set of relaxed labeling functions and by K = { ξ : V → R3 | |ξ(x)| ≤ 1 } a vectorfield mapping
within the unit ball, the primal-dual optimization scheme can be described as follows. We
choose (u0, ξ0) ∈ Crel × K and let ū0 = u0. We choose two time-steps τ, σ > 0. Then, we
iterate for k ≥ 0

ξ(k+1) = ΠK(ξ(k) + σ ∇ū(k))

u(k+1) = ΠCrel
(u(k) + τ( div(ξ(k+1))− 1

ν f))

ū(k+1) = 2u(k+1) − u(k),

(2.24)

where ΠK and ΠCrel
denote projections onto the corresponding sets. Both projections can

easily be realized by simple normalization and clipping, respectively. In our implementation,
the ∇-operator was discretized by means of forward differences on Ṽ and the div-operator -
with backward differences so as to ensure correct integration by parts.
For sufficiently small time-step parameters convergence of the above iterative procedure can
be proven. In our experiments, we observed stable behavior for τ = σ = 0.1. Moreover, the
parameter ν balancing the weighting between data fidelity term and smoothness was fixed to
1.8 throughout all our experiments.

2.4 Experiments

We demonstrate the viability of the proposed approach on multiple challenging synthetic
and real-world image sequences. In particular, we show that the suggested probabilistic
fusion scheme can handle objects of arbitrary topology independent from initialization and
offers significant robustness to shading effects, camera sensor noise and background clutter,
as frequently encountered in real scenarios.

Insensitivity to Object Topology

To validate the importance of global optimization, we start with a synthetic image sequence
of two coupled tori (see Fig. 2.3). Although the data set is not interesting from a photometric
point of view due to the contrasting appearance of objects and background, it is intriguing
from a geometric point of view due to the complex topology of the objects. We compare the
proposed approach to stereoscopic segmentation [141] which is an alternative local multiview
fusion scheme. As can be expected, the local optimization procedure in [141], involving surface
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independent silhouette fusion

proposed probabilistic fusion

Fig. 2.4: Sow sequence. First row: 9 out of 27 input images of resolution 1024 × 768. The utilized
user input is highlighted, whereas blue scribbles mark foreground and red - background. Second row:
Multiple views of the visual hull obtained with the classical independent silhouette fusion technique. Third
row: Corresponding views of the reconstruction result produced by the proposed approach. The numerous
shading effects like shadows and light reflections on the object’s surface as well as the bad color calibration of
the cameras lead to relatively poor independent segmentations of individual images (see Fig. 2.5). This, in
turn, results in overcarving of the subsequently computed visual hull. In contrast, the proposed probabilistic
fusion method produces a very accurate 3D model under these challenging conditions.

evolution at current contour generators only, is highly sensitive to initialization. As stated in
[141], the method requires the initial surface to intersect each of the holes of the final one in
order to converge to an accurate result. However, finding such an initialization is not a trivial
task since it implies knowledge of the imaged objects. It is not surprising that stereoscopic
segmentation completely fails to recover the correct topology starting from a sphere enclosing
the two tori. In contrast, the proposed approach, which does not depend on initialization
and always guarantees convergence to a global optimum for the provided user input, quite
accurately captures the imaged geometry.

Robustness to Shading Effects and Camera Sensor Noise

The next two experiments, illustrated in Fig. 2.4 and 2.6, show the effect of shading effects
like shadows and illumination highlights on the 3D reconstruction process.
The first image sequence, depicted in Fig. 2.4, captures a sow figurine. The data set is rel-
atively challenging even though it does not create such an impression at first glance. While
the figurine is rosy and well distinguishable from the surrounding gray environment, the nu-
merous shading effects like shadows and light reflections adulterate the color and significantly
diminish this discrepance. Furthermore, the images exhibit relatively bad color calibration as
they were acquired by different camera devices. Such effects usually cause misclassification of
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Fig. 2.5: Independent image segmentations for the sow sequence (6 out of 27) and the user interaction in
Fig. 2.4. False negatives are mainly caused by shading effects like shadows and light reflections, whereas false
positives are due to variations in the background color. Expectedly, the poor segmentation results produce
a poor 3D model (see Fig. 2.4). Note however that while false positives do not lead to reconstruction
inaccuracies in most cases, false negatives have a direct influence due to overcarving along the respective
viewing rays.

respective foreground pixels when performing individual image segmentation (see Fig. 2.5),
which, in turn, leads to overcarving of the subsequently computed visual hull. The proposed
probabilistic fusion scheme, which avoids premature hard labeling decisions by exploiting the
entire amount of available image information, is designed as a remedy to similar frequently
appearing difficulties. We emphasize the benefits of the utilized outline coherency criteria by
showing a direct comparison to the classical two-step silhouette integration method [8, 79]
(see Fig. 2.4). In particular, we employed the approach in [128] to perform individual image
segmentations. It should be mentioned that in addition to regional color cues this method
relies on image edge information to increase the precision of the segmentations. In both cases,
we used the same user input in one of the images, displayed in Fig. 2.4, to build the underly-
ing color models. Moreover, in both cases foreground/background distributions were modeled
by multivariate Gaussians. Note that even though individual user interaction per view helps
to overcome color calibration problems, it doesn’t give any substantial improvements in case
of shading effects and considerably increases the interactive efforts required. Expectedly,
the independent silhouette fusion technique produces a rather poor reconstruction. This is
confirmed by individual image segmentations (see Fig. 2.5). In contrast, the proposed proba-
bilistic fusion method produces a quite accurate 3D model under these challenging conditions.
Even some of the small-scale surface details are recognizable.
Similar conclusions can be drawn from the experiment depicted in Fig. 2.6. The image se-
quence displays a red ceramic bunny figurine. This time, illumination variations cause less
problems due to the diffuse reflectance properties of the material. For that reason, the inde-
pendent silhouette fusion approach already gives a satisfactory result (see Fig. 2.6). Most of
the small inaccuracies are due to unclean locations on the figurine. We use this data set to
investigate the behavior of both methods (the proposed probabilistic fusion and the indepen-
dent silhouette fusion) in case of camera sensor noise. To this end, noise within certain range
was added randomly to the image color data. We plotted the deviation of the computed 3D
model from a given ground truth at increasing noise range (see Fig. 2.7) measured in units of
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independent silhouette fusion

proposed probabilistic fusion

Fig. 2.6: Bunny sequence. Left: 7 out of 36 input images of resolution 640×480. The utilized user input
is highlighted, whereas blue scribbles mark foreground and red - background. Right, first row: Multiple
views of the visual hull obtained with the classical independent silhouette fusion technique. Right, second
row: Corresponding views of the reconstruction result produced by the proposed approach. Although the
traditional silhouette fusion approach gives a relatively accurate reconstruction in this case, some small
imprecisions are still notable in particular caused by unclean locations on the figurine. The concurrent
probabilistic fusion scheme produces an impeccable 3D model.

sRGB color space (color values are within [0, 255]). As a ground truth we used a visual hull of
the object computed from manually obtained segmentations. Note that the visual hull is only
an approximation of the physical object. Yet, it serves as a ground truth in this case since it
exhibits the case of perfect data. If ugt : V → {0, 1} denotes an implicit labeling representing
this ground truth surface (being 1 within the interior region and 0 within the exterior) and
u : V → {0, 1} the obtained 3D labeling, we measure the misalignment between them as

ε =

∫
V
|ugt(x)− u(x)| dx∫

V
ugt(x) dx+

∫
V
u(x) dx

. (2.25)

In particular, we have ε ∈ [0, 1] with ε = 0 if and only if both reconstructions are identical
and ε = 1 if u is the empty set. Two important observations can be made when analyzing the
graphs in Fig. 2.7. First, it is evident that the noise levels, at which both compared approaches
start to degrade, are quite different. While the independent silhouette fusion method shows
a notable deviation at noise range of 20 color space units, the accuracy of the probabilistic
one is unaffected up to noise range of 50 units. The superior resilience to camera sensor
noise of the proposed probabilistic formulation is additionally emphasized by its generally
smooth behavior for ascending noise levels, which is in contrast to the jumpy performance of
its opponent.
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Fig. 2.7: Robustness to camera sensor noise. The accuracy of the proposed probabilistic approach and
the traditional independent silhouette fusion procedure for the image sequence in Fig. 2.6 is investigated
for ascending levels of image noise. The noise is added randomly and measured in terms of its application
range in units of sRGB color space. The precision of the reconstruction is computed as the deviation from
a provided ground truth surface. See text for more details.

color-based reconstruction

Fig. 2.8: Statue sequence. Left: 4 out of 36 images of resolution 1536×1024. The utilized user interaction
is superimposed in the last image (blue scribbles mark foreground and red - background). Right: Multiple
views of the estimated color-based reconstruction. Note the color similarity between the object and the
pedestal as well as the severe intensity variations.

Robustness to Background Clutter

While the image sequences considered so far capture a more or less homogeneous background,
the next two data sets take a further step and increase the degree of difficulty by picturing
typical real-world backgrounds spanning a wide range of colors.
The first sequence, depicted in Fig. 2.8, illustrates a statue imaged in front of a blue poster
in the Academic Art Museum in Bonn, Germany. Although the poster helps to separate the
captured statue from the others in the background, the object is not completely separable in
color space due to its similarity to the pedestal. Since the goal is the precise reconstruction
of the statue, the pedestal underneath was marked as background by the provided user in-
teraction (see Fig. 2.8). Expectedly, this diminishes the discriminative power of both color
distributions. An additional challenge pose the severe intensity variations which are due to
the fact that the photographs were taken at different times of the day. Despite all of these
difficulties, the proposed approach produces a relatively accurate reconstruction result, even
though it exhibits some small imprecisions (e. g. at the basement). In fact, the estimated 3D
model turns out to be precise enough to initialize a stereo-refinement process and obtain a
highly accurate 3D model (see Fig. 3.15).
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color-based reconstruction

Fig. 2.9: Bust sequence. Left: 3 out of 36 input images of resolution 1296 × 864 and superimposed
user interaction (blue scribbles mark foreground and red - background). Right: Multiple views of the 3D
reconstruction obtained with the proposed approach. Note the wide range of background colors as well as
the complex reflectance properties of the material.

The second image sequence, depicted in Fig. 2.9, displays a bronze bust sculpture of Robert
Sauer. As can be seen from the example pictures, the background continually changes includ-
ing the surrounding building interior and hence a very wide range of colors. This significantly
exacerbates the separability of the sculpture in individual images, even though most of the
objects in the background are relatively far apart from it. Additional difficulties cause the
complex reflectance properties of the material. Once again, the proposed approach produces
a quite accurate result under these challenging conditions. Even though the reconstruction
exhibits some small-scale artifacts (e. g. at the basement) and some oversmoothing effects
(e. g. the spectacle frame), the shape of the bust is clearly recognizable.
The accuracy of the computed 3D models is confirmed by the image segmentations obtained
by projecting them onto the input views (see Fig. 2.10). In case of background clutter, this
leads to dramatic improvements over the naive isolated segmentation approach and clearly
demonstrates the potential of the proposed probabilistic silhouette coherency criteria. This
observation is additionally emphasized by a quantitative evaluation over the entire image
sequences, shown in Fig. 2.11. To this end, ground truth segmentations were obtained by
labeling the images manually. The segmentation error was computed as

err =
pfalse

ptrue + pfalse
, (2.26)

where ptrue and pfalse denote the number of correctly classified and misclassified pixels in all
views, respectively. Note that err ∈ [0, 1]. The independent segmentation method demon-
strates poor performance for all data sets except for the “bunny” sequence due to shading
effects, illumination variations and background clutter. In contrast, the proposed probabilis-
tic fusion approach shows clear superiority and gives accuracy improvements ranging from
factor 3 (for the “bunny” sequence) to factor 46 (for the “statue” sequence). Note that while
the segmentation error is negligible for the “sow” and “bunny” sequences, acquired in lab
conditions, it increases for the “statue” and “bust” sequences, generated in more complex
environments, but to an acceptable extent. These results provide an explicit justification for
the exploration of various coherency criteria in the context of multiview segmentation.

User Interaction

The provided user interaction is visualized for all real experiments in Fig. 2.4, 2.6, 2.8 and 2.9.
It is evident that the proposed approach gets by with only a few roughly specified scribbles
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Fig. 2.10: Segmentation of individual images of the sequences in Fig. 2.4, 2.6, 2.8 and 2.9. First column:
One of the input images. Second column: Interactive segmentation with the method in [128]. Third column:
Interactive segmentation with the proposed approach obtained by projecting the computed 3D model onto
the image. Even though the estimated silhouette-coherent segmentations are not pixel precise due to the use
of 3D regularization and the discrepance between image resolution and volumetric resolution, the silhouettes
are registered accurately and offer dramatic improvements over independent 2D segmentations.

in one of the input images. This suggests that the method is not very sensitive to the user
intervention, which was confirmed in our experiments.
As previously mentioned, we relied on single Gaussians in our modeling as all of our test objects
are single-colored. Multivariate Gaussians minimize the interaction efforts while achieving a
substantial degree of robustness to model deviations. We also experimented with Gaussian
mixture models. However, we observed that the results gradually degrade for more than two
mixture modes due to over-fitting effects. Note that the user-specified scribbles occupy only
a small portion compared to the entire amount of pixel data. Yet, Gaussian mixture models
or kernel density estimation can still be preferable in case of multi-colored objects.
It should be emphasized that all demonstrated data sets could successfully be handled e. g. by
the independent silhouette fusion scheme or the method in [17] with the appropriate amount
of user interaction on a per-view basis. In contrast, the proposed approach stands out by its
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Fig. 2.11: Accuracy of individual image segmentations. The proposed probabilistic approach is compared
to the naive independent segmentation method. The probabilistic fusion scheme has been evaluated by
projecting the final 3D model onto the image planes. Ground truth segmentations have been obtained by
labeling the images manually. Note the tremendous improvement in segmentation accuracy achieved by
exploiting probabilistic silhouette coherency criteria.

# images image runtime
resolution GPU

tori 20 640 × 480 3.54 s
sow 27 1024 × 768 2.08 s
bunny 36 640 × 480 4.41 s
statue 36 1536 × 1024 3.95 s
bust 36 1296 × 864 4.26 s

Tab. 2.1: Data sets and GPU runtimes for all demonstrated experiments.

capability to produce an accurate reconstruction from only a few scribbles in one of the input
images. This property reveals its high practical value, especially in case of long sequences
containing multiple hundreds or thousands of photographs.

Computational Time

As previously mentioned, the proposed approach has been designed with focus on not only
robustness but also computational efficiency. In particular, we make use of recent progress
in parallel computing with a GPU implementation of the method. Note that its ingredients
enable parallelization over the volume grid since all involved computations are at a voxel
basis. Moreover, it can be observed that the overall computational time scales linearly with
both the number of input images and the volume resolution. Runtimes for all demonstrated
experiments, measured on a NVIDIA Tesla C2070, can be found in Table 2.1. In our GPU
implementation, we used exclusively global memory to store all input images and volumetric
data. Even though we tried to employ shared memory in the optimization step, exploiting the
neighboring structure of the underlying PDEs (2.24), this didn’t lead to a notable runtime
reduction. Note that the computational time of the presented method does not depend on
the image resolution (ignoring the time for loading the images) but only on the number of
views. In all test cases, volumetric resolution is in the range between 8 and 21 million voxels.



46 Interactive Color-Based Multiview Reconstruction

It should be recalled that the input of the proposed approach consists not only in the image
sequence and the provided user interaction but also a specification of a bounding box contain-
ing the object of interest. Although a tight specification is not necessary for the method to
work, it influences the precision of the computed 3D model and hence the computational time
(a loose bounding box requires a high volume resolution). One way to obtain a bounding box
estimate is to use the 3D point cloud, produced by classical structure-from-motion techniques,
which are needed to calibrate the input views.

2.5 Discussion

We presented a novel energy minimization approach for interactive joint silhouette extraction
and 3D reconstruction from a number of calibrated 2D camera views. The energy model is
derived from a probabilistic setting via Bayesian inference and is optimized globally using con-
vex relaxation. The probabilistic formulation avoids making hard decisions about silhouette
occupancy based on single views and allows to optimally take into account color information
from all input images. In addition, it provides a novel decoupling scheme to account for
the interdependence between voxels, which gives rise to a Bayesian inference problem and
allows to compute the globally optimal reconstruction. We experimentally demonstrated that
the proposed method compares favorably to state-of-the-art silhouette-based reconstruction
methods in that it is more robust to noise, background clutter, shading effects and camera
sensor perturbations. Moreover, it does not require initialization and therefore easily handles
3D shapes of complex topology. Making use of a GPU implementation, robust interactive
reconstructions were computed with runtimes of up to 4.41 seconds.



3 Multiview Stereo as a Convex
Problem

If everybody is thinking alike, then somebody isn’t thinking.

George Patton (1885-1945)

In this chapter, we focus on one of the most prominent modalities for image-based modeling,
which also plays a central role in the human perceptual system – multiview stereo.

3.1 Introduction

Motivation

In the previous chapter, we considered the reconstruction of a 3D shape from its image
outlines. While the silhouette cue gives rise to genuinely robust 3D modeling approaches, it
suffers from limited accuracy due to its inability to capture surface indentations. Multiview
stereo overcomes this difficulty by relying on the process of matching corresponding points
in different views (see Fig. 3.1). Although there are no inherent assumptions about the 3D
geometry involved, there is a primary assumption about the reflectance properties of the
observed object justifying the matching procedure – the so called Lambertian assumption. It
states that the appearance of a point on the surface should be independent from the viewing
direction and thus consistent throughout the entire image sequence. Even though many
real-world objects possess Lambertian reflectance properties, there are also cases, where the
respective assumption is severely violated, e. g. metallic objects, shiny objects, translucent
objects etc. Besides, the reliability of the matching process strongly depends on the degree of
textureness of the imaged object. For these reasons, the development of robust regularization
schemes is of paramount importance for the design of practical multiview stereo approaches.
Fortunately, as we show in this chapter, the multiview stereo problem can be cast in a convex
setting.

Previous Work

The earliest dense multiview stereo algorithms use carving techniques to obtain a volumetric
representation of the scene by repeatedly eroding inconsistent voxels [113, 78]. Thus, the
reconstruction problem is posed as a volume labeling problem, where each voxel is labeled as
opaque or transparent depending on its photoconsistency score. Thereby, a greedy strategy
is applied to infer an occupancy decision for all voxels separately. Yet, the space carving
framework manifests some weaknesses. In particular, it introduces a bias towards maximal
photoconsistent shapes and does not enforce smoothness, which often results in rather noisy
reconstructions. Moreover, the greedy nature of the methodology could produce erroneous
overcarving or undercarving effects. Even though subsequent generalizations [16, 87] man-

47
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Fig. 3.1: Stereo-based matching. Stereovision relies on the process of matching corresponding points in
different views. Assuming Lambertian reflectance properties of the observed object, a 3D point on the
surface should project to image points of similar appearance.

age to mitigate this drawback, it still persists, which strongly affects the robustness of the
respective approaches. For this reason, mathematically more elegant energy minimization
techniques became more popular.
Variational methods for multiview stereo inherit the active contour framework proposed orig-
inally for image segmentation [59]. They pose the problem as one of modeling a continu-
ous two-dimensional surface in space by minimizing an appropriate energy functional. This
methodology allows to combine a data fidelity criterion on the unknown surface with desired
properties like regularity, thus achieving a considerable increase in robustness to image noise.
The first approaches are based on the geodesic active contour model [19, 62] by measuring
weighted surface area, where weights reflect local photoconsistency. This leads to the following
energy functional

E(S) =
∫

S
ρ(s) ds, (3.1)

where ρ : V → [0, 1] denotes a photoconsistency map encoding the agreement of the respective
image projections. The corresponding flow acts as a smoothness term while at the same
time attracting the evolving shape towards photoconsistent locations. Different techniques
were applied to model the surface: level sets [36], triangle meshes [33, 31] and graph cuts
[134, 54]. A generalization of this approach was developed in [105], which allows to replace
the classical pointwise photoconsistency estimation with a global matching score on the entire
image domain. A major drawback of the minimal surface model is that it couples data
fidelity and regularization. As a result, it is difficult to adjust the regularizing behavior [118].
In particular, the global minimum of the underlying functional is always the empty set, which
makes local optimization schemes indispensable. Although graph cut optimization could be
applied to minimize (3.1) [134, 54], it has to be performed only within a restricted band so
as to avoid the trivial solution and to obtain a meaningful result. As a consequence, this
strategy is still local in nature and does not entail any globality guarantees.
In order to react on the shrinking behavior of the minimal surface model and to make global
optimization feasible, researchers explored the possibility to extend the model in (3.1) by
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including additional regional terms over the surface interior and exterior, respectively. This
leads to minimizing the following functional

E(S) = λ

(∫
int(S)

ρobj(x) dx +
∫

ext(S)
ρbck(x) dx

)
+
∫

S
ρ(s) ds, (3.2)

where int(S), ext(S) ⊂ V signify interior and exterior region, and ρobj , ρbck : V → [0, 1] define
assignment costs associated with both regions. λ ∈ R is a weighting parameter. Note that,
in general, the empty set is no longer a global minimum of (3.2). Yet, a major challenge
poses the construction of the regional maps ρobj , ρbck : V → [0, 1]. Different strategies were
proposed to address this task. One of the simplest is to build a ballooning constraint preferring
shapes of larger volumes [134, 81]. However, although the empty set can be excluded as a
solution, oversmoothing effects still persist making it difficult to reconstruct simultaneously
thin protrusions and deep concavities [51, 71]. A straightforward alternative to the ballooning
model is the incorporation of data-aware volumetric terms instead of a constant formulation.
This could be achieved for example by merging precomputed depth maps to label voxels as
interior or exterior with respect to the estimated surface [51, 144, 45]. Although this technique
could produce very high-quality reconstructions, it is suboptimal in the sense that the process
of 3D modeling is split into two stages. Erroneous decisions in the first stage could propagate
to the final estimate, especially at locations of specular reflections or weak texture. Alternative
formulations were proposed as building blocks of adaptive 3D modeling schemes. Yet, their
accuracy could be unpredictable due to the underlying non-uniform spatial sampling.
A different method for finding a closer specification for the observed shape is to complete
the classical photoconsistency information identifying locations, where the surface is likely to
pass, by orientation information reflecting the local object normal.1 In essence, the following
cost functional is being minimized

E(S) = − λ

∫
S
〈NS(s), F (s)〉 ds +

∫
S
ρ(s) ds, (3.3)

where NS denotes the local surface normal of S and F : V → S2, where S2 ⊂ R3 is the
unit sphere, represents an estimate of the unit outward orientation of the observed shape.
Obviously, minimizing (3.3) brings the normals NS is accordance with the provided vectorfield
F while encouraging the surface to pass through photoconsistent locations in space. The
question, which arises now, is how to define a vectorfield F with the desired properties. In
[12], the authors propose to use the gradient of the photoconsistency map for that purpose.
While this simple method improves on the constant ballooning model, it still does not provide
state-of-the-art reconstructions. An interesting approach for estimating and integrating a
normal field was described in [49]. Thereby, starting from an initial patch, the surface is built
progressively based on geometric and photometric criteria. [41, 140] proposed to compute
the local scene orientation directly via an optimization procedure over the distortion of the
resulting image projections. Optimal oriented patches in space are determined based on the
agreement of their projections onto the images, where a direct visibility contact is provided.
Another established strategy for obtaining object normals is to utilize precomputed depth-
maps [88, 84]. In fact, it could be regarded as an alternative to classical depth-map fusion
methods. Once the surface normals are available, the 3D model is usually computed by
applying a local optimization procedure like [60]. In contrast, [12] constructs a graph cut
framework to minimize (3.3) in a globally optimal manner.

1. The problem of integrating given normal information is considered in Chapter 5 in more detail.
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Contribution

The main contribution in the context of multiview stereo is the development of appropriate
variational formulations amenable to convex optimization. In particular, we investigate three
different energy models. They all consist of a combination of a photoconsistency-based dis-
continuity term and regional labeling terms, and thus fit into the general form (3.2). The
difference between them is in the way the photoconsistency function is computed as well as in
the definition of regional costs. The first model follows a classical formulation – the photocon-
sistency is estimated by just averaging the matching scores of the corresponding projections,
and the regional subdivision terms are computed with the approach described in Chapter 2. In
the second energy model, the photoconsistency estimation is performed by applying the voting
scheme of [33], which results in more precise photoconsistency maps. The regional terms are
constructed in the same way as in the first model. In contrast, the third model replaces the
silhouette-based foreground/background subdivision of the volume by a more sophisticated
one using stereo information, which allows to capture also surface indentations not “visible”
in the image silhouettes. This approach is related to depth-map fusion methods. However,
the proposed formulation is entirely volumetric and does not involve any preprocessing on the
image domain. This entails a series of advantages.

• It avoids discretization problems that could arise in a per-pixel visual ray determination
since a ray through a pixel will generally not be adapted to the volume subdivision.

• A crucial issue when measuring photoconsistency along viewing rays is the sampling rate
of the discretization. A too dense sampling leads to high computational costs, whereas a
too sparse sampling could result in a miss of the maximizing location. In the volumetric
framework, the sampling is naturally given by the volume resolution.

• The computational time of the proposed mechanism does not depend on the resolution
of the input images but only on the volume resolution.

Additionally, we present a convex relaxation scheme for converting the constructed energy
functional into a convex one. Two different numerical schemes, a linearized fixed-point iter-
ation method and a primal-dual method, are examined and compared to each other on their
suitability for solving the arising numerical problem.
The main results in this chapter are published in [73, 71, 72].

3.2 Continuous Energy Models for Multiview Stereo

In this section, we present and discuss three different energy models for multiview reconstruc-
tion. All three functionals have the same structure combining on-surface photoconsistency
and regional costs.
Building the basic template, we revisit the variational formulation in (3.2) and consider the
following minimization problem

E(S) = λ

(∫
int(S)

ρobj(x) dx +
∫

ext(S)
ρbck(x) dx

)
+
∫

S
ρ(s) ds

Ŝ = arg min
S⊂V

E(S).
(3.4)

The first two terms of the functional impose correct subdivision of the volume into inte-
rior/exterior according to the respective regional costs. The last term acts as a constraint
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corresponding distorted patches

respective undistorted patches

Fig. 3.2: Estimating patch distortion. Corresponding patches are matched via a homography mapping.
The homography is defined by means of a local planar approximation of the imaged surface at each point.
From left to right: Tangent plane and corresponding normal vector for a particular point on the observed
object; a region, marked in one of the input images, used for the zoomings on the right; estimated distorted
patches of size 7× 7 pixels to be matched (first row) and respective undistorted versions (second row).

both for smoothness and photoconsistency by seeking for the minimal surface with respect
to a Riemannian metric. Hence, it can be considered as a weighted smoothness term. The
underlying metric is defined in a way that favors photoconsistent locations and encourages
the surface to pass through them. It should be noted that the cost functions ρobj , ρbck, ρ may
also depend on the surface estimate S so as to estimate explicit visibility or correct image
patch distortion. Yet, such a dependency is suppressed here for simplicity since it would
considerable exacerbate convex modeling.
In the sequel, we discuss different strategies to define the maps ρobj , ρbck, ρ, which give rise to
different formulations and fairly different results.

Energy Model I: Silhouette-based Regional Constraints & Classical Photo-
consistency

This model relies on a foreground/background subdivision of the 3D space based on silhouette
cues. In particular, we use the framework, introduced in Chapter 2, to derive corresponding
regional maps. We reconsider the conditional probabilities for observing colors Il(πl(x)) in
images 1, ..., n

Pobj(x) = P ( {Il(πl(x))}l=1,...,n | x ∈ int(S) )
Pbck(x) = P ( {Il(πl(x))}l=1,...,n | x ∈ ext(S) ).

(3.5)

While describing joint probabilities for observing particular colors provided given region as-
signment, the above values lend themselves to formulating respective regional maps by setting

ρobj(x) = − logPobj(x)
ρbck(x) = − logPbck(x).

(3.6)

Both values could be additionally normalized to lie within [0, 1]. We refer to Chapter 2 for
more details on the probabilistic modeling.
Now, we concentrate on the definition of the photoconsistency function ρ in the last term of
(3.4). A basic requirement for computing photoconsistency is that camera visibility informa-
tion is available. To this end, we apply a state-based approach (see Section 1.1). Specifically,
we minimize the energy with the classical Euclidean regularizer ρ(x) = 1 first, which boils
down to the method in Chapter 2. With the resulting surface, one can compute a signed
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distance function φ : V → R which in turn allows for normal estimation Nx = ∇φ
|∇φ| to each

x ∈ V . In this way, the notion of surface normal, which is a local entity, is generalized to
the entire volume V . Then, visibility is determined by front-facing cameras according to
the estimated normal direction. In particular, photoconsistency is computed in terms of the
normalized cross-correlations (see (1.4)) by averaging over front-facing cameras

c(x) =
1

|N (x)|
∑

(i,j)∈N (x)

NCC(πi(x), πj(x)), (3.7)

where N (x) denotes the set of all front-facing camera pairs according to the normal direction
Nx. Specifically, we could define

N (x) = {(i, j) ∈ {1, ..., n}2 | ∠(−Vi, Nx) 5 γmax,∠(−Vj , Nx) 5 γmax, i 6= j},

where Vk is the viewing direction of camera k. Yet, the above formulation takes only local
visibility criteria into account. The presence of self-occlusions or obstacles, blocking the field
of view, is not explicitly modeled. For this reason, we rely on the following generalized
formulation

N (x) = {(i, j) ∈ {1, ..., n}2 | ∠(−Vi, Nx) 5 γmax,∠(−Vj , Nx) 5 γmax, i, j ∈ V is(x), i 6= j},

where V is : V → P({1, . . . , n}) is a global visibility map and P(X) denotes the power set
of X. In Appendix A, we give more details on how such a volumetric visibility map can
efficiently be obtained. In our experiments, we set γmax = 60◦.
Another important issue associated with the computation of the matching score concerns
the estimation of patch distortion. A square patch in one of the images does not in general
correspond to a square patch in the other images due to the non-linear nature of the projection
mapping. In order to take this aspect into account, we locally approximate the surface by its
tangent plane according to [36] (see Fig. 3.2). As a result, distortion can be estimated via a
homography mapping. For a camera pair (i, j) and a 3D point x ∈ V it is given by

Hij,x = RT
ij −

RT
ijTijN

T
x

NT
x x

, (3.8)

where Rij ∈ R3×3 and Tij ∈ R3 denote the relative rotation and translation between the
local coordinate systems of both cameras. All involved entities are defined in the coordinate
frame of the reference camera i. Note that the matrix Hij,x ∈ R3×3 induces a projective
transformation between the two image planes, which gives rise to a more accurate model than
traditionally used affine transformations. In particular, it is only determined up to a scale
factor. Now, we can compute a NCC score based on the proposed local distortion model

NCC(πi(x), πj(x)) =
1
c1c2

∑
p∈P

〈Ii(p)− Īi(πi(x)), Ij(Hij,x(p))− Īj(πj(x))〉, (3.9)

where P stands for a square patch around πi(x) in the reference image i, Īi and Īj are the
corresponding mean values, and c1, c2 are normalization constants defined in analogy with
(1.4). The expression Hij,x(p) should be evaluated by rewriting the vector p in homogeneous
coordinates (in the local frame of camera i) and reverting back to non-homogeneous coordi-
nates after applying Hij,x. Note that the size of each patch is determined according to its
projection on the reference image plane rather than being set to a fixed size on the tangent
plane. This avoids sampling problems on the image domain. For all our experiments we used
7× 7 pixel windows.
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Fig. 3.3: Propagation of photoconsistency. Illustration of the proposed approach to spread stereo infor-
mation inside a volume. Spatial labeling of the volume as interior (blue arrow) or exterior (green arrow) is
derived based on the location of maximal photoconsistency (red circle) along the depicted viewing ray.

For each 3D point x ∈ V we get some score c(x) between −1 and 1, where 1 implies perfect
correlation. This value is then mapped to the unit interval [0, 1] using the following function
proposed in [134]

f(s) = 1− exp
(
− tan

(π
4
(s− 1)

)2
/σ2

)
. (3.10)

The parameter σ controls the fidelity of the surface to the data and exhibits a trade-off between
smoothness and fitness to the observed measurements. We used σ = 0.5 in our experiments.
Finally, we obtain ρ(x) = f(c(x)).

Energy Model II: Silhouette-based Regional Constraints & Denoised Pho-
toconsistency

The classical photoconsistency estimation used by the previous model generally yields noisy
measures due to homogeneity or repeatability of the texture pattern, which could result in
noisy reconstructions. For that reason, this model relies on a more elaborate approach to
increase the accuracy of the photoconsistency computation. The basic idea is to ask each
camera to give a vote to a point in space. The vote is accepted only if the optimum is reached
at the current point. This methodology leads to a considerable increase in the precision of
the corresponding photoconsistency maps (see Fig. 3.4). This scheme is further generalized
by the next model and described in more detail in Section 3.2.
Thus, the current model combines the silhouette-based volume subdivision used by energy
model I and the denoised photoconsistency estimation proposed in the next paragraph.

Energy Model III: Stereo-based Regional Constraints & Denoised Photo-
consistency

A major limitation of both previously presented energy models is that they use silhouette-
based regional terms which do not capture surface indentations, as these do not affect the
observed silhouettes. As a result, the functionals introduce a bias towards the maximal
silhouette-consistent shape, i. e. the visual hull. In order to address this shortcoming, the
current model replaces previously proposed regional terms by more accurate ones (see Fig. 3.4).
The basic idea is to propagate classical on-surface photoconsistency within the volume and
thereby define confidence values for lying inside or outside the observed object (see Fig. 3.3).
In the following, this approach is explained in more depth.
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The main difficulty in defining volume subdivision terms ρobj and ρbck is the fact that the state
of each voxel in space (inside/outside the object) is affected by potentially distant points. We
address this problem by measuring photoconsistency along visual rays and exploiting the
following property of silhouette-consistent shapes.

Property: Let S be an arbitrary surface which is consistent with the silhouettes of a set of
input images I1, . . . , In. Then, each visual ray passing through a point x in the interior of S
intersects the real observed surface Sgt at least once.

The above statement is quite obvious. In fact, if there exists a visual ray through a point x,
which does not intersect the real surface Sgt, then x does not project within the silhouette
of the respective image. Hence, this point cannot lie in the interior of a silhouette-consistent
shape. Note that the above property is fulfilled for the maximal consistent shape as well as for
any subset of it. This naturally leads to the following idea. We can compute photoconsistency
along each visual ray and take the position, where its maximum is reached, as a potential
intersection with the real surface Sgt; see Figure 3.3. Of course, a viewing ray could intersect
Sgt more than once, but only the first intersection is expected to be photoconsistent according
to a certain set of neighboring cameras. Based on this observation, we can convert classical
photoconsistency measures ρ, describing the likelihood for each point in space to lie on the
surface, into regional terms ρobj , ρbck representing an interior/exterior assignment.
The details of this formulation are exposed in the sequel. We start with an initial silhouette-
based surface approximation SI computed as described in Chapter 2. Due to the above
property, we consider all points x lying in the interior int(SI) of SI and corresponding visual
rays passing through x. Let rj(x, t) be the visual ray to camera j parametrized by t starting at
the camera position. Let tcur be the position of x along the ray. We measure photoconsistency
along the ray with respect to another camera i as

Cj
i (x, t) = NCC(πi(rj(x, t)), πj(rj(x, t))). (3.11)

Once again, patch distortion is approximated by a local homography mapping defined by the
normal direction Nx. Since it is expected that the orientation at the surface intersection point
of a viewing ray corresponding to a front-facing camera is similar to that measured at x, the
same normal direction Nx can be used to estimate distortion along the entire ray rj to simplify
computations. Note that the second term in (3.11) stays constant for varying t as points on
the ray rj always project onto the same location in image Ij . This formulation can easily be
extended to multiple cameras

Cj(x, t) =
m∑

i=1

wj
i (x)C

j
i (x, t). (3.12)

Thereby, we sum only over neighboring cameras according to the normalized viewing direction
Vj(x) of camera j. That is, camera i is excluded if αj

i (x) = ∠(Vi(x), Vj(x)) > αmax for some
bounding angle αmax. Moreover, global visibility criteria are additionally taken into account,
i. e. camera i is embraced only if i ∈ V is(x). The weights wj

i are computed as

wj
i (x) =

αmax − αj
i (x)

m∑
k=1

(
αmax − αj

k(x)
) (3.13)

in order to compensate for non-linear projective warping and violations of the occlusion ap-
proximation. We set αmax = 45◦ in all our experiments, but a more conservative smaller
value could lead to a considerable reduction of computational time. As already mentioned,
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we determine the maximal photoconsistency along rj together with the location, where it is
reached

Cj
max(x) = max

t
Cj(x, t)

tmax = arg max
t
Cj(x, t).

(3.14)

A natural choice for the sampling rate along the ray is the volume resolution since it poses a
constraint on the reconstructable surface details. Now, we can define costs for interior/exterior
assignment with respect to ray rj as

ρj
obj(x) = H(tmax − tcur) · (1− f(Cj

max))
+ (1−H(tmax − tcur)) · f(Cj

max)
ρj

bck(x) = H(tmax − tcur) · f(Cj
max)

+ (1−H(tmax − tcur)) · (1− f(Cj
max)),

(3.15)

where H is the Heaviside function

H(z) =
{

1, if z ≥ 0
0, otherwise

(3.16)

and f is defined in (3.10). The computed values depend on whether the maximal photoconsis-
tency location tmax lies before or behind the current point tcur. If for example tmax < tcur, ρ

j
obj

decreases and ρj
bck increases with the maximal measured photoconsistency Cj

max accounting
for uncertainties as a result of mismatches. In effect, the Heaviside function H realizes this
case differentiation. The final regional costs can be computed by simple averaging over single
rays rj , which yields

ρobj(x) =
1
l

l∑
j=1

ρj
obj(x)

ρbck(x) =
1
l

l∑
j=1

ρj
bck(x).

(3.17)

In practice, only visual rays of front-facing cameras with respect to the normal Nx, which see
the current point x, are considered as described in 3.2. Note that ρobj(x) + ρbck(x) = 1 for
all x ∈ V . In case of photometrically challenging scenes contaminated by noise and shading
effects, more sophisticated fusion strategies could be used. For example, we experimented
with a weighting procedure based on the variance of the measured photoconsistency values
along viewing rays, but we could not observe any visible improvements in the reconstructions.
One could note that the process of maximization of photoconsistency along visual rays can also
be exploited in the computation of on-surface costs ρ(x). In particular, identifying locations
of optimal photoconsistency allows to “clean up” the usually quite noisy photoconsistency
map by means of the voting scheme described below. The basic idea is to treat all potential
causes of mismatches like occlusion, image noise, lack of texture etc. uniformly as outliers in
the matching process. Specifically, the photoconsistency value ρ(x) for a given 3D point x is
computed by asking every image j to give a vote for that location and subsequently fusing
the votes to a final score

ρ(x) = exp{−µ
l∑

j=1

VOTEj(x)}, (3.18)

where VOTEj denotes the vote of camera j and µ ∈ R is a rate-of-decay parameter which
in our experiments was set to 0.15. Now, the idea is to permit a camera j to give a vote to
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the 3D location x only if the correlation score along the corresponding viewing ray takes its
maximum at x, i. e.

VOTEj(x) =
{
Cj

max(x) if tmax = tcur

0 otherwise.
(3.19)

Note that the presented voting scheme accounts for outliers due to occlusions, noise or shad-
ing effects as well as matching ambiguities. It should be noted that the formulation in (3.19)
could be generalized by taking the presence of a local extremum (instead of a global one) of
the photoconsistency score along the ray as a criterion for a vote. While this method could
lead to some minor accuracy improvements in certain cases, its implementation could be very
tricky due to jaggedness of the photoconsistency map.

In order to accelerate the computation of the data terms of the three energy models, we use a
banded multiresolution scheme by starting with a coarse volume resolution and subsequently
restricting the computations at finer levels. We carry out 1-4 iterations at each level and
update the data terms iteratively. The surface estimate from the previous step provides
orientation information, needed to obtain correct patch distortion, and also serves as a basis
for computing the global visibility map V is (see Appendix A). In this way, useful geometric
information is propagated to the final result.

Comparison of the Three Energy Models

Fig. 3.4 shows a comparison between the data terms used by the three energy models on two
data sets which will serve throughout the thesis for further evaluations. Visualized are cross-
sections through all data volumes at the lowest resolution: ρobj , ρbck and ρ, respectively. The
traditional silhouette-based subdivision technique and photoconsistency estimation (upper
row) are opposed to the more elaborate stereo-based approach and voting scheme (lower row).
As expected, the naive silhouette-based method fails to produce accurate regional terms at
concavities like the legs of the dino figurine or the back of the temple model in contrast
to the stereo-based one. As a result, the corresponding volume subdivision and on-surface
discontinuity costs compete each other in such areas, which makes the task of finding an
appropriate weighting very challenging or even unfeasible. Moreover, the voting scheme used
by the second and third energy models yields notably more precise photoconsistency maps
by removing the influence of repeated texture patterns or accidental matching. However, as
a side effect, this approach could erroneously suppress photoconsistency in case of occlusions
or ambiguous texture (see for example the vertical inside wall of the temple model), which in
turn lets the regional terms play the decisive role. See Fig. 3.6 and 3.7 for the corresponding
reconstructions.
Comparing the runtimes of the three approaches for computing the data terms, it is evident
that the first one requires substantially less computational efforts than the other two. Indeed,
it involves projecting each point in space onto a set of images and matching the respective
projections while the voting scheme used by energy models II and III envisages considering
different viewing rays to each particular 3D point. With the applied banded strategy the
runtime difference is in the order of the band width. In practice, the particular factor is even
larger, since at grazing viewing angles the number of considered voxels within the band along
the respective viewing ray is usually larger than the thickness of the band. Computational
times for the data sets in Fig. 3.4 are given in Section 3.4.
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cross-section ρobj ρbck ρ

Fig. 3.4: Comparison between the volumetric data terms used by energy models I, II and III for two data
sets. Visualized are cross-sections through all data volumes: ρobj , ρbck and ρ, respectively. The silhouette-
based subdivision technique and photoconsistency estimation used by energy models I and II (upper row)
are opposed to the more elaborate stereo-based approach and voting scheme used by models II and III (lower
row). Intensity values correspond to estimated costs. Note that stereo information allows to capture surface
indentations in contrast to silhouettes and thus produces more accurate regional terms. Note also that the
voting scheme generally yields more precise photoconsistency maps but could fail in case of occlusions or
ambiguous texture.

3.3 Convex Relaxation and Numerical Optimization

In the previous section, we considered different continuous energy models for multiview stereo
sharing the same variational structure (3.4). In this section, we focus on their optimization. In
particular, we show how the formulation in (3.4) can be cast in a convex relaxation framework
and discuss the optimization of the arising numerical problem.

Convex Relaxation

The first step towards a convex formulation of (3.4) is the switch to an implicit representa-
tion. To this end, we introduce an implicit binary function u = 1int(S) as the characteristic
function of the surface interior int(S). This implies 1− u = 1ext(S). Now, we can rewrite the
minimization problem in (3.4) in the form

E(u) = λ

(∫
V
ρobj(x) u(x) dx +

∫
V
ρbck(x) (1− u(x)) dx

)
+
∫

V
ρ(x) |∇u(x)| dx

û = arg min
u:V→{0,1}

E(u).
(3.20)

The final surface estimate Ŝ can be derived from the relation int(Ŝ) = { x ∈ V | û(x) = 1 }.
It is essential to observe that solving the minimization problem in (3.20) boils down to mini-
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mizing a functional of the general form (1.6). Indeed, the functional in (3.20) reads

E(u) = λ

∫
V

(ρobj(x)− ρbck(x)) u(x) dx +
∫

V
ρbck(x) dx +

∫
V
ρ(x) |∇u(x)| dx. (3.21)

One can note that the second term of the above functional is constant and does not depend
on u. Hence, it can be omitted in the minimization. In other words, minimizing (3.21) is
equivalent to minimizing

E(u) = λ

∫
V

(ρobj(x)− ρbck(x)) u(x) dx +
∫

V
ρ(x) |∇u(x)| dx. (3.22)

It is obvious that the functional in (3.22) is of the general form (1.6). The formulation in
(1.6) can be obtained by setting f = ρobj − ρbck and defining the local metric ||.||x = ρ(x) |.|.2
Based on the above observation, we can apply a convex relaxation strategy by adhering to
the steps outlined in Section 1.4. In particular, the domain of binary labeling functions
{u |u : V → {0, 1}} can be relaxed to {u |u : V → [0, 1]} by retaining the following important
property.

Theorem 8. Let u? : V → [0, 1] be a global minimizer of the functional in (3.22) over the
relaxed domain { u | u : V → [0, 1] }. Then, for almost any threshold µ ∈ (0, 1), the binary
function 1Σµ(u?) : V → {0, 1} with Σµ(u) = { x ∈ V | u(x) > µ } is also a global minimizer.

Proof. The above statement can be inferred directly from Theorem 6 and the fact that the
functional in (3.22) is a special case of the one in (1.6).

The above theorem is central for solving the minimization problem in (3.4). Basically, it states
that the problem boils down to solving

E(u) = λ

∫
V

(ρobj(x)− ρbck(x)) u(x) dx +
∫

V
ρ(x) |∇u(x)| dx

û = arg min
u:V→[0,1]

E(u),
(3.23)

which poses a constrained convex optimization problem. Once a solution û is obtained, a
corresponding surface estimate Ŝ can be derived by choosing a threshold µ ∈ (0, 1) and
setting int(Ŝ) = { x ∈ V | û(x) > µ }. In practice, a mesh representation can be calculated by
applying the Marching Cube algorithm [89].

Numerical Optimization

In this section, we present, discuss and compare two numerical algorithms for solving the
constrained convex minimization problem in (3.23).
Before introducing the numerics, we conduct some analysis of the problem in (3.23). It turns
out that it does not pose a general constrained convex optimization problem but one of a
very special form, which is an important fact that can be exploited. One could observe that
the constraints u ∈ [0, 1] do not play a decisive role. As we do not have any smoothness
requirements on u, the constraints ensure that the minimization problem possesses a feasible
solution. Note that if we optimize over all real-valued functions u : V → R, the values of u will
diverge to +∞ for ρobj − ρbck < 0 and to −∞ for ρobj − ρbck > 0. Yet, after a certain number

2. This local metric can be derived from the Riemannian metric 〈., .〉x = ρ(x)2〈., .〉, where 〈., .〉 denotes the
Euclidean inner product. See [19] for more details.



3.3 Convex Relaxation and Numerical Optimization 59

of iterations, projecting back to the unit interval [0, 1] will not give any changes. In other
words, we can obtain a globally optimal solution of (3.23) by ignoring the constraints during
the optimization process and projecting the result after a sufficient number of iterations onto
the domain determined by the constraints. In practice, the projection could be performed
after each iteration or after a certain number of iterations. Yet, the definition of a convergence
criterion, that ensures a correct solution, requires more care in that case. We can deduce from
the above observations that any method for unconstrained optimization lends itself to solving
(3.23).

Linearization and Fixed-Point Iteration

We start solving the minimization problem in (3.23) in a continuous manner by setting up
the respective Euler-Lagrange equation

λ (ρobj − ρbck)− div
(
ρ
∇u
|∇u|

)
= 0. (3.24)

Thereby, the arguments are omitted for the sake of simplicity.
An alternative to applying a gradient-based iterative scheme, aiming at decreasing the energy
in each step, is to solve the PDE in (3.24) directly. Yet, (3.24) exhibits a non-linear diffusion
equation which is not trivial to solve. The basic idea behind the linearized fixed-point iteration
method is to consider the non-linear diffusivity term g = ρ

|∇u| as constant for a fixed u and to
update it only after a certain number of iterations.3 This leads to a linear PDE of the form

λ (ρobj − ρbck)− div (g ∇u) = 0, (3.25)

which after discretization yields a sparse linear system of equations. In the following, we
present a concrete numerical realization of this idea.
Let us for convenience summarize the constant part in (3.25) as f = λ (ρobj − ρbck). Thus,
our goal is to solve

f − div (g ∇u) = 0 (3.26)

on a discretized volume grid Ṽ defined in (1.8). For a voxel (l,m, n) ∈ {1, . . . , N1 − 2} ×
{1, . . . , N2 − 2} × {1, . . . , N3 − 2} within the volume interior (boundary voxels are handled
analogously) we obtain

0 = fl,m,n − div (gl,m,n∇ul,m,n)

= fl,m,n −
∂

∂x
(g ux)l,m,n −

∂

∂y
(g uy)l,m,n −

∂

∂z
(g uz)l,m,n ,

(3.27)

where ux, uy and uz denote partial derivatives with respect to x, y and z, respectively. The
differentiation in the above expression can be carried out via central differences at intermediate
grid points. For example, the first term reads

∂

∂x
(g ux)l,m,n = (g ux)l+1/2,m,n − (g ux)l−1/2,m,n . (3.28)

Now, we can discretize the partial derivatives of u by means of forward or backward differences,
respectively. Thus, for the terms in (3.28) we have

(g ux)l+1/2,m,n = gl+1/2,m,n (ul+1,m,n − ul,m,n)
(g ux)l−1/2,m,n = gl−1/2,m,n (ul,m,n − ul−1,m,n) .

(3.29)

3. The diffusivity term g is sometimes referred to as lagged diffusivity.
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Finally, plugging (3.28) and (3.29) into (3.27) and writing out the expressions for the other
two variables y and z yields

0 = fi −
∑

j∈N (i)

gi∼juj +
∑

j∈N (i)

gi∼jui, (3.30)

where N (i) denotes the 6-neighborhood of voxel i and gi∼j denotes the diffusivity between
voxel i and its neighbor j. In particular, we average the respective values by setting

gi∼j =
gi + gj

2
. (3.31)

Note that in the above formulation we revert to a more general indexing, where a single index
signifies a voxel. Moreover, it should be noted that evaluating the diffusivities at particular
volume grid points requires the addition of a small constant ε > 0 that prevents the term to
become infinite when |∇ui| = 0. More precisely

gi =
ρi√

|∇ui|2 + ε2
. (3.32)

While the incorporation of such a constant ε modifies the original PDE, the modification is
negligible for small values. In our experiments, we used ε = 0.001.
The second step in the derivation process involves building a system of linear equations and
solving it to obtain an update of u. A closer look at the formulation in (3.30) reveals that
it can be written in matrix form as A~u = b by stacking the values of u at all voxels in a
single vector ~u ∈ RN , where N = N1 · N2 · N3 is the number of voxels. The N×N -matrix
A = (aik)i,k=1,...,N is given by

aik =


−
∑

j∈N (i) gi∼j , if i = k

gi∼k, if k ∈ N (i)
0, otherwise

(3.33)

and
b = (f1, . . . , fN )T . (3.34)

It is easy to see that the matrix A is sparse and diagonally dominant (although not strictly
diagonally dominant). Hence, an efficient iterative algorithm exploiting this structure, like
Successive Overrelaxation (SOR), could be applied to solve the linear system. This leads to
the following evolution scheme for k = 0, 1, 2, . . .

u
(k+1)
i = (1− ω) u(k)

i + ω

∑
j∈N (i),j<i

gi∼ju
(k+1)
j +

∑
j∈N (i),j>i

gi∼ju
(k)
j − fi∑

j∈N (i)

gi∼j
, (3.35)

where ω ∈ R is an over-relaxation parameter that has to be chosen in the interval (0, 2) for
the method to converge. Yet, the value giving optimal performance is usually in (1, 2). For
the particular energy model at hand we obtained the fastest convergence for ω = 1.85. We
should keep in mind that the diffusivities gi∼j have to be updated after a certain number
of iterations. Introducing an index l to explicitly emphasize this produces the generalized
evolution process

u
(l,k+1)
i = (1− ω) u(l,k)

i + ω

∑
j∈N (i),j<i

gl
i∼ju

(l,k+1)
j +

∑
j∈N (i),j>i

gl
i∼ju

(l,k)
j − fi∑

j∈N (i)

gl
i∼j

. (3.36)



3.3 Convex Relaxation and Numerical Optimization 61

After the linear solver yields a sufficiently good approximation (we iterate for k = 1, ..., 10),
we update the diffusivities gl

i∼j and solve the next linear system. Moreover, the constraints
u ∈ [0, 1] are enforced after each iteration by simply clipping the values lying outside the unit
interval.
In some cases, different derivation procedures lead to similar resulting update schemes. In
fact, the proposed linearized fixed-point iteration technique can be interpreted as a specific
quasi-Newton method. This is an important fact which will facilitate further analysis.

Proposition 2. The linearized fixed-point iteration scheme in (3.36) can be interpreted as a
specific quasi-Newton method.

Proof. For convenience we will consider the case when the diffusivity terms are updated after
each iteration and the implicit Gauss-Seidel step (SOR) is replaced by an explicit Jacobi one.
A generalization to the procedure in (3.36) is straightforward.
First, we observe that the gradient of the functional in (3.23) reads

∇E(u) = f − div
(
ρ
∇u
|∇u|

)
,

where f summarizes the constant volume subdivision term, i. e. f = λ (ρobj − ρbck). By
reverting to a discrete setting, we get ∇E(~u) ∈ RN . A quasi-Newton step is given by

~ut+1 = ~ut − ω(Bt)−1∇E(~ut),

where Bt ∈ RN×N and ω ∈ R is a time-step parameter. Based on the previously derived
discretization, we set

(∇E(~ut))i = fi −
∑

j∈N (i)

gt
i∼ju

t
j +

∑
j∈N (i)

gt
i∼ju

t
i

for i = 1, . . . , N . The index t in the diffusivities gt
i∼j indicates that they are defined with

respect to ut, i. e. gt
i = ρi

|∇ut
i|
.

Finally, we specify Bt = (btik)i,k=1,...,N as

btik =
{ ∑

j∈N (i) g
t
i∼j , if i = k

0, otherwise
.

Summarizing all calculations leads to the evolution scheme

ut+1
i = (1− ω) ut

i + ω

∑
j∈N (i)

gt
i∼ju

t
j − fi∑

j∈N (i)

gt
i∼j

.

Remarks.
1) All matrices Bt and (Bt)−1 arising in the optimization are diagonal matrices with positive
diagonal elements. Hence, they are symmetric and positive-definite, which guarantees that
each update direction is a descent direction.
2) A closer look at the evolution scheme reveals that the matrices (Bt)−1 are designed in a way
that some components are encouraged while others are damped. For example in areas, where
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u is approximately constant, the local gradient ∇u will be small in magnitude as well as the
corresponding diagonal entry of (Bt)−1, which will result in a damping effect. Analogously,
at locations of high variation of u, the diffusivity terms g = ρ/|∇u| may become small enough
to intensify the respective component of the functional gradient. This results in favorable
properties of the proposed fixed-point iteration scheme which is both fast and numerically
stable.
3) The over-relaxation parameter ω plays, in essence, the role of a time-step. Hence, in case
of unstable behavior (which is unlikely to occur), the value of ω should be decreased.

Primal-Dual Method

Now, we present an alternative numerical technique for solving the minimization problem in
(3.23) – the primal-dual method. Similar to the linearized fixed-point iteration approach, it
relies on simplification via linearization. However, this time not the Euler-Lagrange equation
but the energy functional itself is being linearized. We already encountered a primal-dual
formulation in Chapter 2. Yet, here we are confronted with a more general energy model.
The basic idea of the primal-dual method is to convert the minimization problem in (3.23)
into a linear saddle-point problem by introducing an auxiliary dual variable ξ : V → R3.
Indeed, the optimization problem in (3.23) can be equivalently formulated as

min
u:V→[0,1]

max
ξ∈K

λ

∫
V

(ρobj(x)− ρbck(x)) u(x) dx +
∫

V
〈∇u(x), ξ(x)〉 dx, (3.37)

where K = {ξ : V → R3 | |ξ(x)| ≤ ρ(x) ∀x ∈ V }. The dual formulation used above is justified
by the fact that the inner product of two vectors is maximized if they have the same direction
and maximal magnitude. Note that the energy functional in (3.37) is linear in both u and ξ.
In this way, we get a minimization problem in u and a maximization one in ξ. Thus, the
optimization in (3.37) can be performed by gradient descent in u and gradient ascent in ξ in
alternating manner. Starting with some initial (u(0), ξ(0)) and setting ū(0) = u(0), we obtain
the iterative procedure

ξ(k+1) = ΠK(ξ(k) + σ ∇ū(k))

u(k+1) = ΠCrel
(u(k) + τ (div(ξ(k+1))− f))

ū(k+1) = 2u(k+1) − u(k),

(3.38)

where Crel = { u | u : V → [0, 1] } and σ, τ > 0 denote time-step parameters. Moreover,
ΠX(.) is the projection operator for the set X. The projection onto Crel is realized by simple
clipping while the projection for K involves modifying the length of the respective vector. In
our implementation, we set σ, τ = 0.1.

Convergence Criterion

As previously discussed, a convergence condition for both numerical schemes should carefully
be chosen in order to guarantee a correct solution. Suppose, we are given a convergence
tolerance εconv > 0, u(cur) is the current estimate and u(prev) – the one at the previous
iteration step. Below, we present three different stopping criteria which we found to work
well in practice.

• The iterative procedure is terminated as soon as |u(cur) − u(prev)| < εconv.

• The iterative procedure is terminated as soon as |E(u(cur))− E(u(prev))| < εconv.
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Fig. 3.5: Linearized fixed-point iteration (LFPI) vs. primal-dual (PD) method. Both numerical techniques,
evaluated on the “dinoRing” data set (see Section 3.4), offer a fast and stable convergence behavior. Yet,
the primal-dual method is substantially faster (about a factor of 3).

• If ξ(cur) denotes the dual variable at the current iteration step, the iterative procedure
is terminated as soon as the gap between primal and dual energy falls below εconv, i. e.
|Ep(u(cur))− Ed(ξ(cur))| < εconv, where

Ep(u) = λ

∫
V

(ρobj(x)− ρbck(x)) u(x) dx +
∫

V
ρ(x) |∇u(x)| dx (3.39)

and
Ed(ξ) =

∫
V

min { λ (ρobj(x)− ρbck(x)) − div(ξ(x)), 0 } dx. (3.40)

Thereby, the primal energy Ep(u) measures the maximum of E with respect to ξ for a
given fixed u. Analogously, Ed(ξ) is the minimal energy with respect to u for a fixed ξ.
The identity of both values indicates the presence of a saddle point.

In practice, for stability reasons, it is advisable to check the convergence criterion over a
certain number of iterations (more than two) before terminating the evolution process.

Comparative Evaluation

We compare the linearized fixed-point iteration (LFPI) method and the primal-dual (PD)
method in terms of runtime, potential for parallel computing and memory requirements.
When talking about runtimes, first of all it should be noted that both numerical schemes
possess linear convergence rate. Yet, this fact doesn’t reveal the typical physically measured
computational times. To this end, for a particular data set we plot the energetic evolution,
depicted in Fig. 3.5, and estimate the computational costs for one iteration. It is evident that
both numerical techniques offer a fast and stable convergence behavior. Yet, the primal-dual
method is substantially faster (about a factor of 3) in terms of number of iterations required.
The acceleration factor changes if we measure the runtime in seconds. Surprisingly, using
a CPU implementation or a GPU one makes a difference. The computational costs for one
iteration on the CPU of the primal-dual scheme are considerably higher than these for the
linearized fixed-point iteration approach. Indeed, the first requires two separate loops for
updating primal and the dual variable, respectively, while the latter necessitates only one
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single loop over the entire volume. As a consequence, the overall computational time of
the primal-dual method, executed on the CPU, is only insignificantly lower than that of the
linearized fixed-point iteration method. In contrast, a GPU implementation leads to different
observations. This time, the computational costs for one primal-dual iteration are lower than
these for a linearized fixed-point iteration. This is due to the fact that a primal-dual step
envisages a direct update of the respective values while a linearized fixed-point step involves
summing over all direct neighbors. Finally, with a GPU implementation we obtain an overall
acceleration factor of about 5 in favor of the primal-dual method, measured in seconds.
A closer look at the evolution equations of both numerical schemes – (3.36) and (3.38) –
reveals that the two of them are perfectly suited for parallelization as the computations for
individual voxels can be performed independently. Hence, a GPU implementation is in both
cases straightforward. Yet, some care should be taken when parallelizing the linearized fixed-
point iteration method since it involves applying the SOR approach for solving the arising
system of linear equations. To this end, the established red-black strategy could be used.
Thereby, the values for a particular voxel and its neighbors are updated in an alternating
manner. We measured the computational time on a NVIDIA Tesla C2070 GPU for one
iteration of both techniques – 0.015s for the primal-dual method and 0.027s for the linearized
fixed-point iteration method.
Finally, we make some notes on the memory requirements of both numerical schemes. The
primal-dual method requires maintaining five variables per voxel – the primal variable u, the
three-dimensional dual variable ξ and the auxiliary variable ū (ignoring the handling of a
convergence criterion). The linearized fixed-point iteration method involves updating four
variables per voxel – the relaxed implicit function u and three diffusivity values along the
three coordinate axes. Note that the diffusivities do not need to be stored as they could
be calculated on the fly. Yet, this would considerably increase the computational costs. We
can conclude that in a straightforward implementation both techniques exhibit comparable
memory requirements with the linearized fixed-point iteration approach being slightly more
economical.

3.4 Experiments

In this section, we complement the comparison of the proposed energy models in Section
3.2 with an experimental validation. Additionally, we present an exhaustive experimental
evaluation of the most promising model – energy model III.

Experimental Comparison of the Three Energy Models

First, we provide a comparison between the presented energy models I, II and III (see Section
3.2). They are tested on the “dinoRing” and “templeRing” data sets which are part of
the already mentioned Middlebury multiview stereo evaluation project [112]. The data sets
contain 48/47 calibrated images of resolution 640×480 of a plaster dinosaur and a reproduction
of a temple in Sicily. Both objects exhibit very different properties. While the dinosaur
figurine is relatively smooth and weakly textured, the temple duplicate is well-textured, but
of complex geometry in terms of small-scale details and sharp corners.
Fig. 3.6 shows reconstructions obtained with the three energy models on the first data set at
volume resolution 2563. The first two models clearly fail to recover the concavities (e. g. at
the legs) due to the use of silhouette-based regional terms that act in contradiction to the
stereo-based on-surface term (see Fig. 3.4). A decrease of the weighting parameter λ will
not lead to the desired effect since this will also cut protruding parts (e. g. the spikes). In
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reconstruction with energy model I

reconstruction with energy model II

reconstruction with energy model III

Fig. 3.6: Comparison of energy models I, II and III on the “dinoRing” data set. 4 out of 48 input images
of resolution 640 × 480 and multiple views of the reconstructions obtained with the three energy models.
Note that the first two models completely fail to recover deep concavities due to the limitations discussed
in Section 3.2. In contrast, energy model III is able to retrieve accurately deep indentations as well as thin
protrusions.
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reconstruction with energy model I

reconstruction with energy model II

reconstruction with energy model III

Fig. 3.7: Comparison of energy models I, II and III on the “templeRing” data set. 4 out of 47 input images
of resolution 640 × 480 and multiple views of the reconstructions obtained with the three energy models.
Although the first model captures the deep concavity at the back, it produces a very noisy reconstruction.
The second model successfully suppresses noise, but fails at locations of ambiguous texture. In contrast,
the third model achieves the highest accuracy by recovering all large-scale details.
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data set # images completeness accuracy runtime

dinoSparseRing 16 98.3 % 0.53 mm 1 h 2 min

dinoRing 48 99.4 % 0.43 mm 3 h 27 min

templeSparseRing 16 91.8 % 1.04 mm 1 h 4 min

templeRing 47 97.8 % 0.72 mm 4 h 12 min

Tab. 3.1: Quantitative evaluation of the reconstructions in Fig. 3.9 and respective runtimes.

this experiment, λ was chosen as the smallest value that retains all relevant surface details,
but it is still insufficient to capture the concavities even with the improved photoconsistency
estimation. Energy model III follows a purely stereo-based formulation which circumvents
the mentioned shortcomings and produces a visibly more accurate reconstruction.
Analogously, Fig. 3.7 offers a comparison on the second data set. Here, the first energy model
captures the deep indentation at the back, but the reconstruction is quite noisy and imprecise
due to the noisy photoconsistency map (see Fig. 3.4). Although the second model produces
a generally more accurate reconstruction, it completely fails in areas of weak or ambiguous
texture (e. g. the wall at the back; see Fig. 3.4). In contrast, the third model achieves the
highest accuracy by generating a smooth shape preserving all large-scale details.
The computational times of the three methods, which were measured for a single-core im-
plementation on a 2.66 GHz Intel Core2 architecture, range from 15-20 minutes for the first
model to more than 4 hours for the third one. Not surprisingly, the increased accuracy of the
third model comes at the expense of increased computational efforts. Note that these runtimes
can be reduced by a more conservative choice for the parameters αmax and γmax and/or a
GPU implementation. While a GPU implementation of the optimization is straightforward,
a GPU realization of the described voting scheme is infeasible by using a parallelization on a
voxel basis due to the high potential computational costs for a single thread.4

Analysis of Energy Model III

In this section, we give a detailed experimental evaluation of the most viable energy model –
model III.
As mentioned in Section 3.2, a banded multiresolution scheme was applied in order to ac-
celerate the computation of the data terms. Reconstructions at intermediate levels for the
“dinoRing” data set are shown in Fig. 3.8. Additionally, the evolution of an initial surface
towards the final result is depicted for the finest volume resolution of 2563. Note that the
final reconstruction does not depend on initialization due to the convexity of the arising op-
timization problem. In the visualized evolution process, a generic initialization was used –
a box centered in the middle and with the same alignment as the delimitating bounding
box. Moreover, we deployed the linearized fixed-point iteration method. Yet, the primal-dual
method leads to a fairly similar minimization process with virtually the same result, but at a
faster pace. A closer look reveals the difference to local optimization techniques like level sets
[114]. While the surface always evolves coherently for level set methods, there are no such
constraints for the applied convex optimization as structures can appear and fade freely.
The aim of the next experiment, depicted in Fig. 3.9, is twofold – to present a quantitative
evaluation of energy model III and to examine its dependence on the number of input images.
As expected, the accuracy of the reconstructions improves when increasing the number of input

4. Note also that the allocated register memory for each thread is quite limited and provides storage for only
a couple of local variables.
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multiresolution scheme

evolution process

Fig. 3.8: Surface evolution towards the final result. First row: Successively refined reconstructions with
increasing resolutions of the volume: 643 (initialization and final result), 1283 and 2563. Second row:
Surface evolution at the finest resolution obtained by thresholding the evolving function u at 0.5 (see
Section 3.3). Note that in contrast to level set methods, the evolution process here is not coherent.

dinoSparseRing (16 images) dinoRing (48 images)

templeSparseRing (16 images) templeRing (47 images)

Fig. 3.9: Middlebury data sets. Reconstructions obtained with energy model III on the established Mid-
dlebury data sets – dinoSparseRing (16 images), dinoRing (48 images), templeSparseRing (16 images)
and templeRing (47 images). Note how the accuracy of the reconstructions improves when increasing the
number of input images, especially in areas of low visibility or poor texture.
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Fig. 3.10: Bunny sequence. 2 out of 33 input images of resolution 1024× 768 and multiple views of the
reconstructed 3D surface. The data set is particularly challenging due to the presence of homogeneous
texture.

Fig. 3.11: Beethoven sequence. 2 out of 36 input images of resolution 1024× 768 and multiple views of
the reconstructed 3D surface. The data set is particularly challenging due to the absence of salient texture.

images. The most notable changes are in areas of low visibility (i. e. parts of the object visible
in a reduced number of views due to occlusions) and poor texture. See for example the corner
of the temple and the back of the dinosaur. Thus, increasing the number of input images seems
to be quite helpful to resolve the encountered ambiguities. These observations are confirmed
by respective quantitative evaluations shown in Table 3.1. Laser-scanned models of both
objects are used as ground-truth in order to evaluate the quality of the reconstructions. The
accuracy metric shown is the distance d (in millimeters) that brings 90% of the reconstructed
surface within d from some point on the ground truth. The completeness score measures the
percentage of points in the ground truth model that are within 1.25mm of the reconstructed
model. The used volume resolution is 2563 for “dino(Sparse)Ring” and 256 × 384 × 192
for “temple(Sparse)Ring”, respectively. Corresponding runtimes, measured with a single-core
implementation on a 2.66 GHz Intel Core2 architecture, are also listed. As already mentioned,
the obtained computational times could be reduced with a more conservative choice for the
parameters αmax and γmax and/or a (partial) GPU implementation.
Fig. 3.10 and 3.11 demonstrate the performance of the proposed approach on two challenging
image sequences. The “bunny” sequence (see Fig. 3.10) is challenging due to the presence
of homogeneous texture while the “Beethoven” sequence (see Fig. 3.11) is challenging due
to the absence of salient texture. Despite these difficulties, which introduce ambiguities in
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Fig. 3.12: Statue #1. 2 out of 38 input images of resolution 1800 × 1612 and multiple views of the
reconstructed 3D surface.

Fig. 3.13: Statue #2. 2 out of 36 input images of resolution 3072 × 2048 and multiple views of the
reconstructed 3D surface.

Fig. 3.14: Statue #3. 2 out of 38 input images of resolution 2048 × 3072 and multiple views of the
reconstructed 3D surface.

the matching process, the proposed approach produces 3D models of a genuinely acceptable
quality. Even though some artifacts could be observed at the inner face of the ears of the
bunny or at the cheek of the Beethoven figurine, the reconstructions exhibit all large-scale
details and a high degree of smoothness.
In Fig. 3.12, 3.13 and 3.14, we show 3D reconstructions of three statues produced within
the framework of a project with the Academic Art Museum in Bonn, Germany. All three
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data set # images image volume runtime
resolution resolution

bunny 33 1024× 768 216× 288× 324 1 h 38 min

beethoven 36 1024× 768 240× 288× 360 2 h 56 min

statue #1 38 1800× 1612 336× 456× 248 6 h 26 min

statue #2 36 3072× 2048 300× 340× 320 3 h 20 min

statue #3 38 2048× 3072 288× 480× 288 6 h 21 min

Tab. 3.2: Experimental settings and runtimes for the reconstructions in Fig. 3.10, 3.11, 3.12, 3.13 and
3.14.

Fig. 3.15: 3D reconstruction pipeline. A complete reconstruction pipeline is obtained by applying the
approach, described in Chapter 2, to compute a rough estimate and subsequently refining it with the
proposed method. This allows to produce a high-quality 3D model of an object from a collection of
calibrated images and a few scribbles marking foreground and background in one of them.

models are duplicates of ancient statues of historical value reproducing a particular event
from the Greek mythology. Digitizing these works of art allows to rebuild their original
configuration and to unveil the messages left by the sculptor [44]. All reconstructed 3D
models are accurate and highly detailed and completely fulfill the quality requirements of the
application. These experiments demonstrate the practical value of the proposed approach and
image-based modeling in general.
Table 3.2 lists the experimental settings and runtimes for the reconstructions in Fig. 3.10, 3.11,
3.12, 3.13 and 3.14. We used sequences of 30-40 images of resolution ranging from below 1 Mpx
up to 6 Mpx. Furthermore, the utilized volume resolutions vary between 20 and 40 million
voxels. Although the computational times are relatively high, they could be reduced with
some simple heuristics or by means of parallel computing as previously discussed. Moreover,
these computational efforts are justified by the utilization of global optimization, which entails
a considerable degree of robustness. There is one more point that should be clarified – the
specification of the weighting parameter λ (see (3.4)). As we rely on a multiresolution scheme,
the parameter should be set in accordance with the current spatial resolution. Increasing the
resolution requires decreasing λ in order to retain the same amount of regularization. This
issue is discussed in Chapter 5 in more detail. In our implementation, we simply set λ = 1 at
the coarsest level and λ = 0.5 at any subsequent level.
Finally, we emphasize that a complete 3D reconstruction pipeline is obtained by applying the
approach, described in Chapter 2, to compute a rough estimate and subsequently refining it
with the proposed method (see Fig. 3.15). This allows to produce a high-quality 3D model of
an object from a collection of calibrated images and a few scribbles marking foreground and
background in one of them. Note the crucial difference of this image-based modeling pipeline
to active laser-scanning techniques. It reveals the main advantage of such technologies – their
flexibility and broad range of applicability.
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3.5 Discussion

In this chapter, we showed that multiview stereo can be cast as a continuous convex opti-
mization problem. In particular, we considered three different energy models amenable to
a convex formulation. While they share the same variational template, they differ in the
particular definition of data terms. The first two energy models use silhouette information to
derive regional subdivision and classify points in space as being inside or outside the observed
object. In contrast, the third model relies exclusively on stereoscopic information to define
all involved data terms. In a comparative study, we demonstrated the performance of the
three approaches. As the third one exhibits the most complex structure, it offers the high-
est accuracy, but at the expense of substantial computational efforts. In both qualitative and
quantitative experiments, we further explored the capabilities of this energy model. Moreover,
we focused on the arising convex optimization problem and discussed two numerical schemes
for solving it. While both of them are fast and stable, and lend themselves to the particular
problem at hand, they manifest different properties in terms of runtime, potential for parallel
computing and memory requirements.



4 Integration of Multiview Stereo
and Silhouettes

Science may set limits to knowledge,
but should not set limits to imagination.

Bertrand Russell (1872-1970)

In the previous two chapters, we considered convex formulations for 3D reconstruction from
object outlines and stereo information. In this chapter, we unify silhouettes and multiview
stereo in a single framework, i. e. we tackle the problem of finding the most photoconsistent
surface that exactly fulfills silhouette constraints.

4.1 Introduction

Motivation

So far, we have become acquainted with the silhouette and the stereo cue as powerful tools
for multiview 3D reconstruction. Yet, both of them have their strengths and weaknesses.
Silhouette-based methods offer considerable robustness, but suffer from limited accuracy,
mainly due to the inability to capture concavities. On the other hand, the accuracy of multi-
view stereo approaches does not depend on the particular geometry of the imaged object, but
strongly relies on the Lambertian assumption. As a consequence, there are practical cases,
where both paradigms fail to produce a 3D model of acceptable quality, like the one depicted
in Fig. 4.1. The image sequence captures a metallic head statue which poses a challenge
for silhouette-based methods, due to the presence of indentations, as well as stereo-based
ones, due to severe specular reflections and the presence of thin geometric structures like the
pedestal. Expectedly, none of the two modalities for image-based modeling is able to deliver
an accurate reconstruction. This creates the demand for techniques that combine the advan-
tages of silhouette- and stereo-based methods and promise better prospects of success. Ideally,
silhouettes should prevail at fine-scale protrusions and specularities, and stereo information –
at surface indentations (see the rightmost reconstruction in Fig. 4.1). To this end, the problem
can be formulated as finding a 3D shape that is both photo- and silhouette-consistent.

Previous Work

The first strategy to fuse complementary features like multiview stereo and silhouettes was
to use a visual hull (computed from outlines) as initialization for a stereo-based approach by
restricting the solution to lie within the specified area [92, 134]. In other words, the following
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two out of 33 silhouette-based stereo-based silhouettes
input images reconstruction reconstruction & stereo

Fig. 4.1: Silhouette and stereo integration. While silhouette-based methods cannot reconstruct inden-
tations of the surface, since these do not appear in the silhouettes, stereo-based reconstruction methods
tend to remove thin structures and are heavily affected by specular reflections such as those of metal
objects. In contrast, approaches integrating silhouette and stereo information combine the advantages
of both modalities and allow to restore concave areas (around the ears) as well as fine geometric details
(such as the pedestal).

cost functional should be minimized

E(S) =
∫

S
ρ(s) ds

s. t. S ⊂ V H(Sil1, . . . , Siln),
(4.1)

where V H(Sil1, . . . , Siln) ⊂ V denotes the visual hull computed from the given set of silhou-
ettes and ρ : V → [0, 1] is a photoconsistency map. Note that the constraint in (4.1) can
equivalently be formulated as πi(S) ⊂ Sili ∀ i = 1, . . . , n. Following the discussion in Chapter
3, one can observe that the above energy model does not preclude the trivial solution – the
empty surface. This difficulty was circumvented by using a greedy procedure to find the most
photoconsistent shape [92] or by heuristically restricting the search space [134]. Yet, both of
these strategies are suboptimal and could produce inaccuracies in the geometry. Apart from
these considerations, a grave limitation of the above methodology is that it does not guarantee
exact silhouette consistency of the estimated 3D surface.
An alternative technique is to unify both information sources in a single variational formula-
tion. A straightforward approach envisages the minimization of a functional of the form

E(S) =
∫

S
ρ(s) ds + w

n∑
i=1

( |πi(S)\(πi(S) ∩ Sili)| + |Sili\(πi(S) ∩ Sili)| ) , (4.2)

where w ∈ R is a weighting parameter and |C| signifies the cardinality of a set C. This
optimization problem was addressed via various local procedures [26, 33, 40]. Finding a
global solution is a genuinely challenging task due to presence of a myriad of local minima.
For that reason, the proposed local optimization schemes may lead to a numerically unstable
behavior and introduce a bias near the visual hull boundary. Moreover, the final result is highly
dependent on initialization. The parameter w governs the degree of silhouette consistency of
the obtained surface and balances between the empty solution and a purely silhouette-based
estimate.
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Some researchers advocated utilizing predetermined surface points to impose silhouette con-
sistency [56, 124, 115]. This can be formulated as minimizing the following cost functional

E(S) =
∫

S
ρ(s) ds

s. t. pj ∈ int(S) j = 1, . . . ,M,

(4.3)

where p1, . . . , pM ∈ V is a set of points or regions in 3D space and int(S) ⊂ V denotes
the surface interior. Various heuristics was proposed to generate reliable 3D points, usually
involving photometric or contour-based criteria. The main drawback of this approach is that
it requires premature decisions about voxel occupancy which could lead to spurious artifacts
in the reconstructions. Moreover, in general, exact silhouette consistency is hard to achieve
with this method.
A mathematically elegant alternative to fuse silhouette and stereo information is stated by the
stereoscopic segmentation model [142, 43, 28]. Thereby, appropriate evolution terms enforcing
photoconsistency and silhouette consistency criteria are derived by means of the derivative of
the reprojection error of the estimated shape. Specifically, the method involves minimizing

E(S) =
n∑

i=1

∫
Ωi

|Ii(z)− T (π−1
i,S (z))|2 dz, (4.4)

where T : S(Θ) ⊂ V → R3 denotes a texture map calculated from the input images. π−1
i,S

signifies the back-projection mapping of camera i with respect to surface S, i. e. to each pixel
the intersection point of the respective viewing ray with the surface is assigned. The energy
model in (4.4) is appealing due to the fact that it captures different aspects of the reconstruc-
tion process, in particular photometric criteria, silhouette consistency and explicit visibility
estimation. However, due to its complexity, it is difficult to overcome local optimization which
is prone to undesired local minima. 1

To address this difficulty and come apart from local evolution schemes, [116] proposed a
graph cut framework for silhouette and stereo fusion. The key idea is to incorporate exact
silhouette constraints in the construction of the graph while encouraging the cut to follow
photoconsistent locations. Unfortunately, the practical applicability of this method is limited
due to its high memory requirements. This poses a severe restriction on the volume resolution
at which reconstructions can be computed. Additional drawbacks result from the discrete
nature of the formulation (see Section 1.4).

Contribution

We propose a convex mathematically transparent framework for silhouette and stereo fusion.
The idea is to cast multiview 3D reconstruction as a constrained variational problem, where the
minimized functional encodes photometric criteria and exact silhouette consistency is imposed
by means of convex constraints that restrict the domain of feasible functions. A silhouette-
consistent reconstruction is computed by convex relaxation, finding a global minimizer of
the relaxed problem and subsequent projection onto the original non-convex set. Due to
the inherent convex formulation, it can be shown that the obtained solution of the original
problem lies within an energetic bound of the optimal one. In fact, it is the first approach

1. An example of a undesired local minimum is the case of a torus, where the initialization consists of a
disk enclosing it. Since local deformations (indentation) of the disk only increase the overall surface area
without decreasing th reprojection error, the local minimization procedure will not give rise to a torus but
rather remain stuck with the disk - see [66] for an experimental validation.
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Fig. 4.2: Schematic views of silhouette consistency. A 2D visualization of the object surface and its
projection onto the image shows that for a silhouette-consistent shape at least one voxel along each visual
ray through a silhouette pixel is occupied, whereas all voxels along rays through non-silhouette pixels are
empty. The bright area on the image plane indicates the outlines of the observed object and the shaded
voxel is an occupied one along the given viewing ray.

for silhouette and stereo integration that entails any globality guarantees. Compared to
established fusion techniques, the proposed formulation does not depend on initialization
and leads to a more tractable numerical scheme by removing the bias near the visual hull
boundary. All practical benefits are demonstrated on experiments with several challenging
real-world data sets including metallic objects, low-texture objects and complex objects with
fine-scale details. Moreover, we examine the suitability of two different numerical schemes for
solving the arising optimization problem.
The main results in this chapter are published in [68, 24].

4.2 Convex Integration of Silhouettes and Stereo

We revisit the classical weighted minimal surface model for multiview stereovision introduced
in Chapter 3

E(S) =
∫

S
ρ(s) ds. (4.5)

As previously discussed, global minimization of (4.5) is meaningless without any additional
constraints as this leads to the empty surface as a solution. Moreover, we saw that given
silhouettes could be deployed to further specify the observed object and avoid the trivial
result. Yet, the integration of photoconsistency and silhouettes is not an easy task due to the
conceptual difference of both cues.

Introducing Silhouette Constraints

The basic idea of the proposed formulation is to impose exact silhouette alignment of the
computed shape during the energy minimization process. This naturally prevents the collapse
of the surface, since the empty set is clearly not a silhouette-consistent solution.
More specifically, we solve the following constrained optimization problem

min
S

∫
S
ρ(s) ds,

s. t. πi(S) = Sili ∀ i = 1, . . . , n.
(4.6)

Unfortunately, the above minimization is highly non-convex: Depending on the values of the
photoconsistency function ρ, variations in S may give rise to arbitrary increases or decreases in
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the cost functional. Furthermore, imposing silhouette consistency in the above representation
is not straightforward as a small surface deformation may easily violate the constraints.

Convex Relaxation

Surprisingly, these difficulties can be removed by reverting to an implicit representation of
the surface S. In order to cast (4.6) as a convex optimization problem, the surface S is again
represented by the characteristic function u : V → {0, 1} of its interior int(S). Hence, changes
in the topology of S are handled automatically without reparametrization.
With this implicit surface representation, the optimization problem (4.6) in S is equivalent to
the following optimization problem in the binary labeling u

min
u∈D′

∫
V
ρ(x) |∇u(x)| dx, (4.7)

where

D′ =

u : V →{0, 1}

∣∣∣∣∣∣∣∣
∫

Rij

u(r) dr ≥ δ if j∈Sili ∀i, j∫
Rij

u(r) dr = 0 if j /∈Sili ∀i, j

 . (4.8)

Thereby, Rij denotes the visual ray through pixel j of image i. In this implicit formulation,
the silhouette consistency constraint in (4.6) gives rise to equality and inequality constraints.
These constraints are based on the following reasoning: For all visual rays from the camera
center passing through a pixel inside a silhouette at least one of the voxels along this ray
should be occupied, whereas for a visual ray passing through a pixel outside a silhouette all
voxels along the respective ray should be empty (see Fig. 4.2). In the spatially continuous
formulation adopted in this paper (where there exists no notion of discrete voxels), the con-
stant δ in (4.8) denotes the thickness of material below which the considered object becomes
translucent. It should be noted that this material-dependent parameter δ gives rise to a more
realistic physical model than imposing∫

Rij

u(r) dr > 0 if j ∈ Sili ∀ i, j.

Moreover, while the latter also leads to a convex set, this set is open such that projections
are not defined and existence of solutions cannot be assured. In discrete implementations, we
simply choose δ = 1, which we also do in the following to simplify the notation.
There are a few important remarks regarding the formulation in (4.7) that should be made.
In case of imperfect silhouettes, the above constraints can be applied only to those pixels for
which we have certain confidence about being inside or outside a silhouette. Note that this
property is in contrast to most of the existing approaches which require apparent contours
of the imaged object to be provided. In a discrete setting, the volume resolution should be
determined according to the given image resolution. When the respective volume sampling
is too coarse, some discretization artifacts could appear in the reconstruction. Unfortunately,
increasing the voxel resolution entails a considerable computational and memory burden and
is not always possible in practice. In such cases subsampling the input silhouettes could be
helpful. Note that the constraints in (4.7) could give an empty set. This can happen when
all voxels along a visual ray passing through a silhouette pixel in one of the images project to
background in another image. Although this is unlikely to happen in a real scenario, it can
occur in case of noisy silhouette input. Such difficulties can be circumvented by restricting
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the computations to the visual hull of the object and holding the values of u for all other
voxels fixed.
Now, let us concentrate on the optimization of the energy model in (4.7). Interestingly, the
functional is convex. Yet, due to the constraint that u is a binary-valued function, the overall
minimization problem (4.7) is non-convex (because the space of binary functions is non-
convex). This can be resolved by relaxing the binary constraint and allowing the function
u to take on values in the interval [0, 1]. The relaxed problem therefore becomes that of
minimizing a convex functional over a convex set

min
u∈D

∫
V
ρ(x) |∇u(x)| dx, (4.9)

where

D =

u : V → [0, 1]

∣∣∣∣∣∣∣∣
∫

Rij

u(r) dr ≥ 1 if j∈Sili ∀i, j∫
Rij

u(r) dr = 0 if j /∈Sili ∀i, j

 (4.10)

is the set of continuous valued functions u which are silhouette-consistent with respect to all
images i and all rays j. Again, the corresponding constraints follow the formulation in (4.8).
Surprisingly, in this implicit representation of the shape S by a relaxed labeling function
u : V → [0, 1], the set D of silhouette-consistent configurations is convex.

Proposition 3. The set D of all silhouette-consistent functions defined in (4.10) forms a
convex set.

Proof. As D is defined by a set of inequality constraints, the claim could be proven by gen-
eralizing Corollary 1 to a continuous setting. Yet, in the following, we expose a direct proof.
Let u1, u2 ∈ D be two elements of D. Then any convex combination u = αu1 +(1−α)u2 with
α ∈ [0, 1] is also an element in D. In particular, u(x) ∈ [0, 1] for all x. Moreover,∫

Rij

u dr = α

∫
Rij

u1 dr + (1− α)
∫

Rij

u2 dr ≥ 1 if j ∈ Sili,

and similarly ∫
Rij

u dr = α

∫
Rij

u1 dr + (1− α)
∫

Rij

u2 dr = 0 if j /∈ Sili.

Thus u ∈ D.

The above statement implies that (4.9) poses a constrained convex optimization problem
which can be solved by means of any of the methods presented in Section 1.3. In Section 4.4,
we discuss the numerical minimization of the model. In particular, we adapt two techniques,
already encountered in Chapter 2 and 3 – linearized fixed-point iteration and primal-dual
method. While we compared both procedures on a linear model combining regional terms
and on-surface photoconsistency (fitting into the general form (1.5)), here we complete the
evaluation by testing them on the weighted minimal surface model in (4.6). Surprisingly,
although the functional in (4.6) can be considered as a special case of (1.5) (for λ = 0), the
two numerical schemes demonstrate a genuinely different behavior.
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Binary Solution via Thresholding

Since we are interested in minimizers of the non-convex binary labeling problem (4.7), a
straightforward methodology is to threshold the solution of the convex problem appropriately.
Although this does not guarantee finding the global minimum of (4.7), the proposed strategy
entails a series of advantages compared to classical local optimization techniques. Intuitively,
for smooth functionals extending the set of feasible functions, computing the global minimum
over this domain and subsequently projecting to the nearest point within the original set
is expected to give a more accurate estimate than a simple gradient descent procedure. In
particular, the proposed methodology has the following advantages:

• It allows to incorporate exact silhouette constraints without making premature hard
decisions about voxel occupancy along each viewing ray passing through a silhouette
pixel.

• It does not depend on initialization since the relaxed functional is optimized globally.

• It leads to a simple and tractable numerical scheme which does not rely on a locally
estimated surface orientation and thus does not introduce a bias near the visual hull
boundary.

• The algorithm provides a solution to the binary optimization problem (4.7) which lies
within an energetic bound of the optimal solution (sometimes called ε-minimizer in the
literature). This is stated in the following proposition.

Proposition 4. Let E denote the functional in (4.9) and u∗ be a minimizer. Let D′ ⊂ D be
the set of binary silhouette-consistent functions defined in (4.8). Furthermore, let u′ ∈ D′ be
the (global) minimum of (4.7) and ũ the solution obtained with the above procedure. Then the
computed solution lies within an energetic bound of the optimum.

Proof. Since D′ ⊂ D, we have E(u?) 5 E(u′) and hence

E(ũ)− E(u′) 5 E(ũ)− E(u?),

where the right hand side can easily be computed.

The projection ũ ∈ D′ of a minimizer u∗ onto D′ can be computed by simple thresholding

ũ(x) =
{

1, if u∗(x) ≥ µ
0, otherwise

, (4.11)

where

µ = min
{(

min
i∈{1,...,n},j∈Sili

max
x∈Rij

u∗(x)
)
, 0.5

}
. (4.12)

This threshold µ provides the closest (in any Lp-norm) silhouette-consistent binary function
to the solution of the relaxed problem. Note that, in the absence of any additional constraints,
0.5 would be the threshold that realizes the projection. If additional constraints are available
and the constant 0.5 does not lead to a feasible solution, the largest possible value (and closest
to 0.5) possesses the desired property. 2

2. It should be noted that the above thresholding could alternatively be realized by computing the binary
labeling function ũ of lowest energy instead of the closest one. We tested this procedure and found out
that it typically gives a threshold very close to the one specified in (4.12). As a result, both thresholds give
rise to visually indistinguishable reconstructions while the proposed alternative is much faster to estimate.
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Proposition 5. The reconstructed surface exactly fulfills all silhouette constraints, i.e. ũ ∈
D′.

Proof. Let Rpq be a given ray. For q /∈ Silp the silhouette constraint is fulfilled for any
threshold µ ∈ (0, 1) since the labels ũ(x) of all points x along the respective ray are 0. For
q ∈ Silp we have

µ ≤ min
i∈{1,...,n},j∈Sili

max
x∈Rij

u∗(x) ≤ max
x∈Rpq

u∗(x).

This implies ∃x ∈ Rpq : u∗(x) ≥ µ and hence ∃x ∈ Rpq : ũ(x) = 1.

In practice, thresholding by µ can be replaced by subtracting µ from the values of u∗ and
extracting the 0-level. This methodology has the advantage that it produces smoother surfaces
than the thresholding procedure without affecting the energy which is defined on a voxel basis.

4.3 Imposing Silhouette Consistency

The proposed approach boils down to solving the constrained convex optimization problem
(4.9). In Section 1.3, we considered different numerical techniques for accomplishing such
tasks. Some of them, in particular the gradient descent method and the primal-dual method,
involve permanently projecting the current estimate onto the convex domain. Thus, the
efficient realization of this projection is of paramount importance. In this paragraph, we
address the numerical implementation of the projection operator for the specified set.

A Set of Linear Constraints

One can observe that the set D in (4.10) is formed by three types of linear equality and
inequality constraints:

1. At every location x the function u must take on values within the domain [0, 1].

2. For all pixels j of image i that lie outside the silhouette Sili ⊂ Ωi for i = 1, . . . , n the
integral of u along that ray must vanish∫

Rij

u(r) dr = 0 if j /∈ Sili. (4.13)

3. For all pixels j that lie inside the silhouette Sili ⊂ Ωi for i = 1, . . . , n the integral of u
along that ray must be at least 1∫

Rij

u(r) dr ≥ 1 if j ∈ Sili. (4.14)

A Simple Iterative Projection Scheme

Individually, each type of constraint can be easily imposed as follows. The first constraint is
enforced by simply clipping the values of u to the interval [0, 1] for all x. The second type
of constraint in (4.13) is imposed by simply setting all values of u along the respective ray
Sili to zero. This concerns all voxels outside the visual hull of the imaged object. The third
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iterative projection Euclidean projection

Fig. 4.3: Schematic view of projections of an initial configuration (black dot) onto two non-orthogonal
linear constraints. While the sequential projection onto each individual hyperplane (left) leads to config-
urations (red dots) within the set of feasible solutions (shaded area), these configurations will generally
not coincide with the Euclidean projection onto the set (yellow dot). In addition, the final configuration
depends on the order in which the projections are performed. In contrast, the recursive projection algorithm
described in Section 4.3 allows to compute the Euclidean projection (right).

type of constraint in (4.14) requires more effort. Assume that it is violated for some pixel j
in silhouette Sili, i. e. there exists some residual ε > 0 such that∫

Rij

u dr = 1− ε. (4.15)

Then, the projection onto the space of feasible functions, where the respective constraint is
fulfilled, is obtained by simply adding that residual (in equal amounts) to the values of u

unew(x) = u(x) +
ε∫

Rij
dr

∀ x ∈ Rij . (4.16)

Note that the above procedure realizes projection onto the hyperplane associated with the
respective constraint (with respect to any Lp-norm). Iterating the individual projections
can be done quite efficiently. It leads to a configuration which is guaranteed to fulfill all
constraints.
However, enforcing these constraints in a different order will generally produce a different
result. Since the constraints defined above are generally not orthogonal, sequentially project-
ing onto each respective hyperplane will generally not give rise to the Euclidean projection
onto the convex domain. It will lead to a feasible solution but typically not the closest one
among all. This can be seen in the schematic drawing of Figure 4.3, left side: By sequentially
projecting from an initial configuration (black dot) onto two non-orthogonal hyperplanes, one
ends up with a solution (red dot) in the feasible set that is not the closest one to the input
configuration (yellow dot). In our scenario, this will happen if the same voxel lies on two rays
that both violate the constraint. Depending on which of the two constraints is imposed first,
we may obtain a different solution.
In practice, we find that when the evolution step is small enough, this issue is not crucial
and the simple sequential projection often produces acceptable results. In order to avoid
computations of ray-volume intersections any time the constraint is checked, one can compute
the set of relevant voxels to each viewing ray in a preprocessing step and store them in lists.
However, the size of this data structure could grow significantly when the resolution of input
images is high. For this reason, in our implementation, we stored only the first and last voxel
along each ray. Another important issue when using constraints is the frequency of enforcing
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them. In our implementation, we achieved a stable behavior when applying the first constraint
after each optimization iteration and the silhouette constraints after each 10 iterations.
Nevertheless, one may ask if there is a more elegant solution to impose the constraints since
enforcing each constraint sequentially as above not only depends on the order of projections,
but it is also likely to shrink the current solution more than necessary.

Euclidean Projection onto the Convex Set

Ideally, one would like to compute the Euclidean projection onto the convex set of feasible
solutions such that all constraints are taken into account simultaneously. Since there is a huge
number of them, a central challenge is to find an efficient algorithm to do this. Fortunately,
there exist such algorithms in the literature. In this work, we make use of a method that was
first published by Dykstra and Boyle [32, 14]. By alternating projections onto each convex
set in a recursive manner, this approach allows to compute the Euclidean projection onto the
intersection of finite number of closed convex sets.
In our scenario, we first perform the clipping to the values u(x) ∈ [0, 1] in order to satisfy
constraint 1) above. As previously mentioned, constraints of type 2) do not have to be handled
explicitly and can be realized by restricting the computations to the visual hull of the imaged
object. Let us now denote the projections associated with violated constraints of type 3) by Πi

for i = 1, . . . , p.3 More concretely, Πi denotes the projection onto the halfspace corresponding
to constraint i. Furthermore, let ~u denote a vector obtained by stacking the values of u at all
voxels and let ~ucur be our current estimate corresponding to a function ucur /∈ D. We then
iteratively compute a series of projections {~uk

i } and increments {~vk
i } as follows:

~uk
0 = ~uk−1

p ,

~uk
i = Πi(~uk

i−1 − ~vk−1
i ), i = 1, 2, . . . , p,

~vk
i = ~uk

i − (~uk
i−1 − ~vk−1

i ), i = 1, 2, . . . , p,

(4.17)

for k = 1, 2, . . . with initial values ~u0
p = ~ucur and ~v0

i = ~0 for i = 1, 2, . . . , p.
Similar to the simple procedure described in Section 4.3, this recursive algorithm also applies
the individual projections Πi sequentially. Yet, it systematically separates the residuals asso-
ciated with various projection directions so as to make sure that the computed estimates ~uk

p

gradually approach the Euclidean projection onto the intersection of half-spaces.

Proposition 6. The algorithm defined in (4.17) converges to the Euclidean projection onto
the intersection of convex sets.

Proof. For the proof we refer to [32, 14].

Figure 4.3, right side, shows a visualization of this recursive projection method for the case
of two non-orthogonal constraints.
It can be noted that the dimensionality of all involved variables in (4.17) is equal to the
number of voxels and is usually in the order of multiple million. Hence, some care should be
taken when implementing the above procedure to reduce the memory requirements. First,
one can observe that the updates in ~uk

i only involve the previously projected values ~uk
i−1 and

thus can be evaluated on the fly. Moreover, the auxiliary vectors ~vk
i always have the direction

of the normals to the corresponding hyperplanes. Hence, only their lengths have to be stored
instead of the full configurations.

3. Recall that they can be realized by the simple procedure in (4.16).
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4.4 Implementation

This section gives more details on the implementation of the proposed approach. In particular,
the estimation of photoconsistency, involved in (4.9), as well as the numerical optimization of
(4.9) are discussed.

Photoconsistency Estimation

Obviously, the method is independent of the particular computation of the photoconsistency
map ρ : V → [0, 1]. In the presented implementation, the voting scheme, described in Chapter
3, was used because of its high precision. See Chapter 3 for more details.

Numerical Optimization

In this paragraph, we focus on the numerical optimization of the constrained convex optimiza-
tion problem in (4.9). To this end, we adopt two procedures, already encountered in Chapter
3 – linearized fixed-point iteration and primal-dual method.

Linearization and Fixed-Point Iteration

The basic idea of the linearized fixed-point iteration method, introduced in Chapter 3, is to
solve the respective Euler-Lagrange equation directly by linearizing the non-linear part and
derive a linear system of equations. Regarding the functional in (4.9), the Euler-Lagrange
equation reads

0 = div
(
ρ
∇u
|∇u|

)
= ρ div

(
∇u
|∇u|

)
+ 〈∇ρ, ∇u

|∇u|
〉. (4.18)

It can be observed that the only source of non-linearity in (4.18) is the diffusivity g = ρ
|∇u| .

Starting with an initialization u0, we can compute g and keep it constant. For constant g
(4.18) is linear and discretization yields a sparse linear system of equations of the form A~u = ~0
which we solve with the SOR method. More specifically, we iteratively compute an update of
u at voxel i by

u
(l,k+1)
i = (1− ω)u(l,k)

i + ω

∑
j∈N (i),j<i

gl
i∼ju

(l,k+1)
j +

∑
j∈N (i),j>i

gl
i∼ju

(l,k)
j∑

j∈N (i)

gl
i∼j

, (4.19)

where N (i) denotes the 6-neighborhood of i. Finally, gi∼j denotes the diffusivity between
voxel i and its neighbor j. It is defined as

gl
i∼j =

gl
i + gl

j

2
, gl

i =
ρi√

|∇ul
i|2 + ε2

, (4.20)

where ε = 0.001 is a small constant that prevents the diffusivity to become infinite when
|∇ul

i|2 = 0 and |∇ul
i|2 is approximated by standard central differences. The over-relaxation

parameter ω has to be chosen in the interval (0, 2) for the method to converge. The optimal
value depends on the linear system to be solved. Empirically, for the specific problem at hand,
we obtained a stable behavior for ω = 1.3. After the linear solver yields a sufficiently good
approximation (we iterate for k = 1, ..., 10), one can update the diffusivities and solve the
next linear system. Empirically, we observed that the particular choice of a stopping criterion
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is not a crucial issue in practice. We obtained virtually the same results by measuring the
energy decay, the evolution step and the gap of the dual energy (see Theorem 3).
However, some more care should be taken in this case since here we are confronted with
a constrained optimization problem. In Chapter 3, we saw that the linearized fixed-point
iteration method can be interpreted as a specific quasi-Newton method of the form

~ut+1 = ~ut − ω(Bt)−1∇E(~ut), (4.21)

where E(.) denotes the functional in (4.9), ~u ∈ RN summarizes the values of u on the N -
dimensional discretized volume grid Ṽ and Bt ∈ RN×N is defined as Bt = (btik)i,k=1,...,N

with

btik =
{ ∑

j∈N (i) g
t
i∼j if i = k

0 otherwise
. (4.22)

Moreover, the gradient ∇E(~u) ∈ RN is given by

(∇E(~u))i = −div
(
ρ
∇ui

|∇ui|

)
(4.23)

for all voxels i = 1, . . . , N . Reverting to Section 1.3, we recall that a generalization of a
quasi-Newton method to the constrained case could be done by solving a quadratic problem
to estimate the evolution direction in each step. Yet, the involved computational costs would
be prohibitive. For that reason, we propose a different strategy. One can observe that the
evolution scheme in (4.21) boils down to gradient descent if we set Bt = I, where I ∈ RN×N

denotes the identity matrix. The gradient descent method can easily be generalized to the
constrained case by simple back-projection onto the feasible set (see Section 1.3). Hence,
we can construct the following strategy for solving (4.9): We retain the iterative procedure
in (4.19) and impose the constraints after each iteration by projecting the current estimate
to the feasible set. Upon convergence, we switch to a gradient descent procedure so as to
ensure correctness of the algorithm. In fact, this two-step approach can be interpreted as a
single quasi-Newton scheme with respect to an appropriate series of transformation matrices
B0, B1, B2, . . . , Bfinal = I. Moreover, we found out in our experiments that the switch to
the gradient descent method is not necessary in practice since it usually does not lead to any
appreciable changes. This is not surprising, regarding the stable behavior of the linearized
fixed-point iteration method (see Fig. 4.4).

Primal-Dual Method

The primal-dual method derives a saddle-point problem by introducing an auxiliary vari-
able ξ : V → R3. More specifically, the optimization problem in (4.9) can be equivalently
formulated as

min
u∈D

max
ξ∈K

∫
V
〈∇u(x), ξ(x)〉 dx, (4.24)

where K = { ξ : V → R3 | |ξ(x)| ≤ ρ(x) ∀ x ∈ V }. Now, the optimization in (4.24) can
be performed by gradient descent in u and gradient ascent in ξ in alternating manner. Thus,
starting with some initial (u(0), ξ(0)) ∈ D ×K and ū(0) = u(0), we get the following iterative
procedure

ξ(k+1) = ΠK(ξ(k) + σ ∇ū(k))

u(k+1) = ΠD(u(k) − τ div(ξ(k+1)))

ū(k+1) = 2u(k+1) − u(k),

(4.25)

where σ, τ > 0 denote time-step parameters and ΠC(.) is the projection operator for the set
C. In our implementation, we observed stable behavior for σ, τ = 0.1.
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Fig. 4.4: Linearized fixed-point iteration (LFPI) vs. primal-dual (PD) method. Note that the linearized
fixed-point iteration method manifests quite fast and stable energy decay. In contrast, the primal-dual
method exhibits unpredictable (see the jump in the left plot) and considerably slower behavior.

Comparative Evaluation

As in Chapter 3, we present a comparative evaluation of both numerical methods by studying
their suitability for solving the convex optimization problem at hand given in (4.9). To this
end, we pick two image sequences exhibiting different geometric and photometric properties -
the “head” sequence in Fig. 4.5 and the “warrior” sequence in Fig. 4.8. While in the first case
both photoconsistency and silhouette constraints play an important role due to the presence
of concavities as well as thin structures like the pedestal, in the second case the silhouette
information prevails as the obtained reconstruction is close to the visual hull model.
In Fig. 4.4, the energetic evolution for the two proposed numerical schemes – the linearized
fixed-point iteration method (LFPI) and the primal-dual method (PD) – is depicted. As
can be observed, the linearized fixed-point iteration method manifests quite fast and stable
energy decay. In fact, the demonstrated results were reached after 100-120 iterations without
any further visual changes. In contrast, the primal-dual method offers unpredictable and
considerably slower behavior. This appears unexpected, regarding the observations in Chapter
3. We believe that it is due to some stability weaknesses of the primal-dual method, even with
the appropriate time-step settings. Note that plotting the energetic evolution with respect to
the physical time will not give any substantial differences here since the computational time
for the two numerical procedures is dominated by the constraint enforcement. As mentioned
in Chapter 3, a GPU implementation of both schemes is straightforward by parallelizing the
computations over the discretized volume grid.4 See Table 4.1 for GPU runtimes obtained
with the linearized fixed-point iteration method.

4.5 Experimental Results

In this chapter, we proposed a convex optimization method to combine stereo and silhouette
information for multiview reconstruction. In the following, we provide a series of experiments
to assess the properties of the method. Although the presented approach achieves state-of-
the-art accuracy, we believe that its main advantage is its robustness, i. e. the ability to
operate in many practical situations, where traditional methods fail. To emphasize this, we

4. Recall that SOR can be parallelized with a red-black strategy.
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multiview stereo with silhouette-based regional terms

spatial propagation of stereo information

proposed integration of stereo and silhouettes

Fig. 4.5: Experimental comparison with alternative multiview stereo methods on the reconstruction of
a metallic head (see Chapter 3 for more details on the methodology). While both the approach utilizing
silhouette-based regional terms (upper row) and the more elaborate model relying on volumetric photo-
consistency (middle row) fail to recover the pedestal of the statue and produce oversmoothing effects or
erroneous carving, the proposed method (bottom row) accurately recovers all relevant details.

focus on four types of objects which exhibit important challenges for image-based modeling
techniques, namely

• We consider objects that are not Lambertian such as metallic and shiny ones. For such
objects the key assumption underlying the stereo approach that points on the surface
have the same color when seen from different views is violated such that the stereo
information alone is likely to provide suboptimal reconstructions.

• We consider objects with complex and fine-scale details. In traditional weighted minimal-
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Fig. 4.6: Minimization process. Surface evolution starting from the visual hull, obtained by projecting the
current estimate onto the original domain. Note that the presented method is able to generate accurate
shapes starting from this initialization since it does not take the local surface orientation into account.

surface approaches, elongated and fine-scale details are typically suppressed as this dras-
tically reduces the surface area.

• We consider objects that exhibit little prominent texture. Such objects are known to be
difficult for stereo approaches since the matching of similar structures no longer provides
a reliable discrimination of good and bad matches.

• We consider image sequences acquired with a hand-held camera lacking perfect color
and camera calibration. Analogously, the matching process is quite challenging under
such conditions.

In addition, we compare the proposed method to other reconstruction methods already intro-
duced in Chapter 3, and also to alternative techniques imposing simultaneously photometric
and silhouette consistency.

Comparison to Alternative Multiview Stereo Methods

We validate the proposed approach on a scene of a head statue with complex reflection prop-
erties containing thin structures (the pedestal); see Fig. 4.5. Scenes of this type are a known
challenge for variational stereo-based methods due to the violation of the Lambertian as-
sumption and the presence of a regularizer which introduces a bias towards shapes with small
area. To confirm this, we applied two of the energy models introduced in Chapter 3 – energy
model II and III. The first method produces clear oversmoothing effects at concavities and
small-scale structures. The second approach retrieves shape indentations but also leads to
erroneous carving at thin parts and specularities. In contrast, the introduced technique pro-
duces accurate reconstructions of thin structures (the pedestal) as well as concave areas by
incorporating silhouette constraints in the optimization process. Note that all three models
are based on a classical minimal surface formulation but use different methodologies to avoid
the empty surface as a solution. Note also that all three methods use silhouette information
to define regional terms, for initialization or to constrain the domain of admissible functions.

Absence of Bias Towards the Visual Hull

The proposed method is based on minimizing a convex energy under convex constraints.
Although the computed solution does not depend on the initialization, in practice we can
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reconstruction of Sinha et al [115]

convex formulation

Fig. 4.7: Hygeia sequence. 3 out of 36 input images of resolution 2008× 3040 and multiple views of the
reconstructed surface compared to the reconstruction of Sinha et al. [115]. The result obtained with the
proposed approach exhibits a higher grade of smoothness while recovering surface details more accurately
(for example the face and the creases of the cloth).

accelerate computation by initializing the solution with the visual hull. In Fig. 4.6, we show
intermediate steps in the evolution process of the proposed approach. Usually, local minimiza-
tion techniques use the surface orientation to identify locations to deform the current shape
in order to minimize the resulting reprojection error. However, this could lead to instabilities
and introduce a bias near the visual hull boundary by involving surface points beyond the
contour generator. In contrast, the introduced method recovers shape indentations effortlessly
while retaining silhouette alignment during the optimization process.

Comparison to the Approach of Sinha et al. [115]

Fig. 4.7 shows a comparison between the proposed convex relaxation method and the ap-
proach of [115] on an image sequence of a statue of a Greek goddess. The experiments show
that both approaches give rise to a high-quality silhouette-consistent reconstruction. The pro-
posed method, however, offers visible improvements in the area of the face and the creases of
the cloth. Overall, it provides a smoother reconstruction that nevertheless preserves the rel-
evant structures. On the other hand, the recovered surface seems to be slightly overflattened
at some locations (e.g. on the nose or the back), which is due to the discrepance between
image and volume sampling, discussed previously. Note that the input photographs are of
relatively high resolution while the computational costs and memory requirements of a vol-
umetric representation with a comparable sampling rate would be prohibitive. It should be
noted that the formulation in [115] differs from the proposed one not only in the way of fusing
photometric and silhouette information but also in other aspects.
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Fig. 4.8: Warrior sequence. 2 out of 24 input images of resolution 1600 × 1600 and multiple views of
the reconstructed surface. Note that thin structures (for example the handle of the hammer) as well as
concavities (for example at the chest) are reconstructed accurately.

iterative projection Euclidean projection

Fig. 4.9: Iterative vs. Euclidean projection. Imposing silhouette consistency by means of Euclidean pro-
jection onto the feasible set of surfaces is particularly important to correctly handle occluded concave parts
(see marked area). While the iterative projection, described in Section 4.3, often produces artifacts in
such cases, the more accurate Euclidean projection overcomes the numerical difficulties and gives better
reconstructions.

Reconstruction of Complex and Fine-scale Objects

While the above objects were topologically rather simple, Fig. 4.8 shows experimental results
obtained on a considerably more complex geometry of a warrior figurine that has many small-
scale structures such as the hammer and the sword. Again, we observe that the proposed
reconstruction exhibits a relatively high degree of smoothness while preserving all fine-scale
geometric details. Note that the image sequence consists of only 24 images from camera
positions arranged on a hemisphere around the object, which implies large baselines and thus
limited accuracy of the estimated photoconsistency.
Fig. 4.9 shows a comparison between the reconstructions obtained by applying the simple
iterative projection method and the more accurate Euclidean projection in the course of op-
timization (see Section 4.3). While the simple iterative approach produces artifacts in the
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Fig. 4.10: Sow sequence. First row: 3 out of 27 input images of resolution 1024 × 768. Second row:
Multiple views of the reconstructed surface. Despite a lack of prominent texture, the proposed method
allows an accurate reconstruction even of fine-scale details of the object.

area below the fur at the back (marked in red), the Euclidean one overcomes these numerical
difficulties and gives a more accurate reconstruction. Generally, the simple iterative proce-
dure performs poorly in the presence of occluded concave areas. However, in most practical
scenarios such cases do not occur. In fact, in our experiments the “warrior” sequence was
the only one, where we could observe considerable differences between the results obtained by
both techniques.

Reconstruction of Low-textured Objects

The next experiment, shown in Figure 4.10, illustrates that the proposed method allows to
compute good quality reconstructions even for objects that exhibit rather little prominent
texture. For such experiments, where the stereo-matching provides almost no relevant infor-
mation regarding good or bad matches, the proposed method essentially computes a Euclidean
minimal surface that exactly fulfills all silhouette constraints. The results show that even in
the absence of reliable stereo information, highly detailed reconstructions could be obtained.

Robustness to Missing Silhouette Information

In many practical scenarios, perfect silhouette information is hard to obtain due to back-
ground clutter, image noise etc. This raises the question about the practical relevance of the
proposed approach. In contrast to most existing methods for silhouette-based reconstruction,
our method can easily exploit partial silhouette information. While alternative techniques
require given apparent contours, the presented approach exploits the pixel occupancy of the
object projections. Obviously, we can impose silhouette constraints only for those pixels (and
corresponding visual rays) for which we have a minimal confidence about being inside or
outside the silhouette – for example based on some color likelihood criterion. How will such
limited silhouette information affect the final reconstruction ?
In order to explore the behavior of the proposed method in case of incomplete silhouette
information, we assume that only a certain percentage p ∈ [0, 1] of all constraints of type
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Fig. 4.11: Robustness to missing silhouette information. Left: Completeness of the reconstruction ob-
tained with the proposed approach applied on the image sequence in Fig. 4.10 for reduced number of
silhouette constraints. The omitted constraints of type (4.14) were chosen randomly. As a ground truth
served the reconstruction obtained with complete information (see Fig. 4.10) and the deviation from it
was estimated by evaluating (2.25). Right: Reconstruction obtained with only 4% of the constraints of
type (4.14). The corresponding deviation value is about 0.018. Although the accuracy of fine-scale details
degrades by reducing the number of silhouette constraints, the overall large-scale accuracy remains high
even when ignoring 96% of them.

(4.14) is taken into account for reconstruction. Note that omitting constraints of type (4.13)
will have less impact on the reconstruction due to the nature of the silhouette fusion process.
In addition, we assume for objectivity that the subset of ignored constraints has been selected
randomly, i. e. a certain proportion of it is randomly switched off.
Let ufull : V → {0, 1} denote the solution computed with complete silhouette information
and up : V → {0, 1} the solution obtained using only a fraction p ∈ [0, 1] of it. To quantify
the decay in performance with fewer and fewer constraints, we define the reconstruction error
with respect to the solution with complete information as the relative deviation εp:

εp =

∫
V
|ufull(x)− up(x)| dx∫

V
ufull(x) dx+

∫
V
up(x) dx

. (4.26)

In particular, we have εp ∈ [0, 1], with ε = 0 if and only if both reconstructions are identical,
and ε = 1 if up is the empty set.
Figure 4.11 shows the average reconstruction error computed as a function of the percentage of
missing silhouette constraints. It shows that the reconstruction accuracy gradually degrades
with decreasing value of p. Yet, for values p ≤ 0.96 the reconstruction error is below 0.02.
The figure depicts also the reconstruction with only 4% of the silhouette constraints (i. e.
p = 0.96). A direct comparison to Fig. 4.10 reveals that many of the fine-scale details are
oversmoothed while all relevant large-scale parts of the object are preserved. We can conclude
that due to the utilized silhouette fusion scheme the proposed approach enjoys considerable
resilience to missing silhouette information. This assures its high practical applicability.

Reconstruction from a Hand-held Camera

The calibration of the input images is a crucial ingredient of the reconstruction pipeline. While
the above reconstructions were all conducted with imagery obtained either from the internet
or in controlled environments with precalibrated cameras, one may ask if the proposed method
is sufficiently robust to also deal with outdoor sequences generated with a hand-held camera.
In many real-world applications one cannot precalibrate the camera – possibly because the
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Fig. 4.12: Reconstruction from a hand-held camera. 2 out of 28 input images of resolution 2048 × 3072
and multiple views of the reconstructed surface. Despite severe illumination variations in the input images,
the creases of the cloth are recovered in high detail.

images were acquired by another person or because it is not possible to include calibration
patterns in the scene.
In the following experiment, we demonstrate the robustness of the proposed approach to op-
erate with input images lacking perfect color and camera calibration, even though the imaged
object is well-textured and does not feature complex reflectance properties. We acquired 28
photographs of an ancient statue with a hand-held camera (see Fig. 4.12). Fig. 4.12 depicts
multiple views of the recovered surface. Generally, the reconstruction exhibits a high grade
of accuracy despite the severe intensity changes in the images and the imprecisions of the
calibration. Note, in particular, the detailed recovery of the creases of the cloth. Note also
the correct handling of the non-trivial topology of the reconstructed surface.

Energy Bound and Runtimes

As detailed in Section 4.2, the proposed approach does not give a global minimum of the
underlying energy functional (4.6). Yet, the computed solution lies within an energy bound,
dependent on the particular input data, around the global minimum (see Proposition 4). Here,
we present the perimeter of this upper bound for all demonstrated experiments.
Apart from robustness, another crucial issue for a silhouette and stereo integration approach is
the computational time needed. To this end, we used a GPU implementation of the linearized
fixed-point iteration scheme, where the SOR optimization in a red-black strategy runs on the
GPU. For comparison, we implemented the simple iterative projection method (see Section
4.3) as well as the more accurate Euclidean projection method (see Section 4.3). Note, how-
ever, that due to their sequential nature a GPU implementation of the constraint enforcement
step is not meaningful. As a result, the back-projection dominate the overall computational
time of the optimization.
Table 4.1 summarizes the energy bounds and runtimes for all presented experiments. In
order to deliver insight into how tight the bounds are, we estimated the energy gap as the
ratio of the energy at the computed solution (i. e. after thresholding) and the solution of
the relaxed problem (i. e. before thresholding). The variations seem to correlate with the
accuracy of the photoconsistency map and the geometry of the imaged object (e.g. the
presence of concavities). The computational times were measured on a PC with 2.83 GHz
and 8 GB of main memory, equipped with a NVIDIA Tesla C2070 graphics card. Note that the
optimization runs partially on the GPU (SOR scheme) and partially on the CPU (constraint
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image energy before energy after energy runtime runtime
# views resolution thresholding thresholding gap (iter. proj.) (Eucl. proj.)

head 33 1024×768 86315.2 107146 1.24 14 s 29 s
hygeia 36 2008×3040 127877 165292 1.29 91 s 322 s
warrior 24 1600×1600 68160.8 109829 1.61 19 s 97 s
sow 27 1024×768 59661.2 70429.6 1.18 6 s 16 s
statue 28 2048×3072 112417 146437 1.3 47 s 181 s

Tab. 4.1: Energy bounds and runtimes for all experiments. The optimization runs partially on the GPU
(SOR scheme) and partially on the CPU (constraint enforcement). For all experiments the volumetric
resolution was between 15 and 20 million voxels.

enforcement). Note also that the runtime of the proposed approach strongly depends on the
resolution of the input images since it gives the number of constraints to be considered. The
runtime also depends on the particular choice of projection method. However, the dependence
on the volume resolution is less relevant since the evolution scheme runs on the GPU. For
all experiments the volumetric resolution was within the range 15-20 million voxels. The
reported times do not include the photoconsistency estimation as the latter is very sensitive
to the choice of methodology.

4.6 Discussion

In this chapter, we proposed a framework for integrating silhouette and stereo information
in 3D reconstruction from multiple images. The key idea is to cast multiview stereovision
as a convex variational problem and to impose exact silhouette constraints by restricting the
domain of feasible functions. Relaxation of the resulting formulation leads to the minimization
of a convex functional over the convex set of silhouette-consistent functions, which can be
performed in a globally optimal manner using classical techniques. A solution of the original
problem is obtained by projecting the computed minimizer onto the corresponding restricted
domain. We presented an algorithm which allows to efficiently compute the projection of the
current solution onto the convex set of silhouette-consistent configurations. We also proved
that the final reconstruction is within an energetic bound of the optimum.
We saw that, in many cases, the integration of silhouettes and stereo is superior to purely
silhouette-based or stereo-based methods. We also demonstrated that, in contrast to classical
techniques for silhouette and stereo integration, the proposed approach of minimizing con-
vex energies over convex sets leads to a more robust and tractable numerical scheme. The
method makes no hard decisions about voxel occupancy and does not exhibit any bias near
the visual hull boundary. It allows to efficiently compute highly accurate silhouette-consistent
reconstructions for challenging real-world problems (shiny metallic objects, low-texture ob-
jects, multiply-connected objects with fine-scale structure and outdoor reconstructions from
a hand-held camera).



94 Integration of Multiview Stereo and Silhouettes



5 Anisotropic Minimal Surfaces and
Minimal Ratios

A theory is a policy rather than a creed.

Joseph John Thomson (1856-1940)

In the previous chapters, we considered different convex energy models designed with focus
on particular paradigms for image-based modeling. In this chapter, we extend the class of
functionals amenable to convex optimization and alongside the range of applicability of the
respective approaches.

5.1 Introduction

Motivation

As pointed out in Chapter 3, normal information has become an established tool in mul-
tiview stereo since it captures small-scale surface details which are difficult to recover with
other methodologies. Yet, estimating shape orientation by means of stereo matching is quite
vulnerable to noise due to the imprecision of the matching process. Thus, we are facing the
non-trivial question of how to exploit the high-frequency information provided by a normal
field, possibly corrupted by noise, and enhance the reconstructed 3D model without reducing
its overall accuracy. In particular, we are looking for a unified framework which allows to
integrate different cues like silhouettes, photoconsistency and surface normal information in
a robust and transparent manner. The ultimate goal is to combine their advantages and ex-
tend the range of applicability of established techniques. Such an approach should be able to
reconstruct fine-scale shape details on thin protruding structures – a test scenario for which
most of the existing methods fail (see Fig. 5.1). Once again, convex optimization proves useful
and powerful and promotes reaching that goal.
Furthermore, one could observe that most of the energy models, considered so far, exhibit
a linear structure of a data term and a smoothness term, balanced by means of a weighting
parameter λ, which fit into the general form (1.5). Setting this parameter in an adequate
manner is not a trivial task. In fact, the regularizer introduces a shrinking bias in the re-
construction process as it prefers shapes of small area. As a consequence, a too small value
for λ leads to oversmoothing effects, whereas a too large value produces generally a noisy
3D model. Interestingly, there exist also other energy models exempt from such weighting
parameters. An example poses the minimal ratio model, where one minimizes the ratio be-
tween a data term and a smoothness one instead of a linear combination. The minimal ratio
model is particularly appealing due to some useful properties. Firstly, it does not suffer from
a shrinking bias, inherent to minimal surface models. Secondly, the minimal ratio model is
scale invariant, i. e. for a given object the quality of reconstruction does not depend on the
spatial scale at which it is perceived. Thirdly, a globally optimal solution can be obtained by

95
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Fig. 5.1: Accurate 3D reconstructions for challenging objects can be obtained by fusing different cues
like silhouettes, photoconsistency and normal information. A unified framework allows to recover thin
protrusions (e. g. the wings of the bird) as well as fine-scale details on them (e. g. the feathering).

solving a sequence of convex optimization problems.

Previous Work on Anisotropic Minimal Surfaces

In Chapter 3, we became acquainted with different methods for multiview stereo based on
surface normal integration, e. g. [12, 41, 49]. Essentially, they minimize a cost functional of
the form

E(S) = − λ

∫
S
〈NS(s), F (s)〉 ds +

∫
S
ρ(s) ds, (5.1)

where NS denotes the local surface normal of S and F : V → S2, where S2 ⊂ R3 is the
unit sphere, represents an estimate of the unit outward orientation of the observed shape.
Moreover, ρ : V → (0, 1] is a photoconsistency map, reflecting the agreement of corresponding
image projections, and λ ∈ R is a weighting parameter. Note that the last term in (5.1) serves
as a smoothness term needed to suppress noise in the normal field F . Typically, the normal
estimates obtained by means of stereo matching are quite noisy due to the imprecision of the
matching process. This is in contrast to photometric stereo approaches, where the local shape
orientation is derived from estimated reflectance properties of the object and measured color
observations [139, 34]. Due to the high reliability of the shading information, photometric
stereo methods usually do not impose any surface priors like smoothness and minimize a
simple functional like

E(S) = −
∫

S
〈NS(s), F (s)〉 ds, (5.2)

where F : V → S2 denotes the estimated normal field. Yet, the high accuracy of the computed
normals comes at the expense of restricted applicability of photometric stereo as this paradigm
requires controlled illumination conditions.
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An alternative strategy to integrate provided surface normal information is by means of an
anisotropic minimal surface model with respect to an appropriate Finsler metric introduc-
ing directional selectivity. Such approaches were developed within the context of discrete
optimization [64, 76]. Formally, they involve minimizing an energy functional of the form

E(S) =
∫

S
LS(s)(NS(s)) ds, (5.3)

where Lx(.), x ∈ V , signifies a general Finsler metric. It is important to notice that minimizing
the functional in (5.3) alone is not meaningful as it poses a minimal surface problem and as
such gives the empty set as a solution. Yet, the model in (5.3) lends itself to a regularizer in
a variational formulation.
Subsequently, based on previous work on anisotropic diffusion processes [136], anisotropic
minimal surface models were generalized to the domain of continuous optimization [143, 97]. It
was shown that the model in (5.3) gives rise to a convex optimization problem after relaxation
and thus can be solved globally also in a continuous setting.

Previous Work on Minimal Ratios

Minimal ratio models were developed as an alternative to classical minimal surface models and
linear models combining data terms and regularizer. They can be classified in two categories
– discrete and continuous ones.
Discrete minimal ratio models were explored within the graph cut framework [57, 77]. In [57],
the following functional is regarded

E(S) = −

∫
S
〈NS(s), F (s)〉 ds∫

S
ρ(s) ds

, (5.4)

where F : V → S2 denotes a normal field with the desired surface orientation and ρ : V →
(0, 1] is a function encoding certain spatial preference. Note that the minimal value of the
functional in (5.4) is negative, i. e. minimizing it is equivalent to maximizing its absolute
value. The functional in (5.4) is particularly interesting due to some favorable properties,
which will be discussed later in the chapter, and its global optimizability. In [77], the class of
ratio models, that can be optimized globally in a discrete setting, was extended by

E(S) =

∫
int(S)

ρobj(x) dx∫
S
ρ(s) ds

(5.5)

and

E(S) =

∫
S
ρ(s) ds∫

int(S)
dx

, (5.6)

where int(S) ⊂ V denotes the interior of S and ρobj : V → R is a given volumetric potential
function.
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Minimal ratio models were considered also in a spatially continuous setting within the frame-
work of total variation minimization [120]. Thereby, the following functional was proposed

E(u) =
λ

∫
V
ρobj(x)u(x) dx+

∫
V
|∇u| dx∫

V
ρ′obj(x)u(x) dx+K

, (5.7)

where u : V → [0, 1] denotes a relaxed labeling function, ρ′obj : V → R≥0 is a non-negative
volumetric potential function and λ ∈ R, K > 0 are constants. It turns out that a global
minimum of (5.7) can be obtained by solving a single convex optimization problem.

Contribution

The main contribution of this chapter is to propose an energy minimization framework for
multiple view reconstruction that allows to combine multiview photoconsistency, silhouette
and normal information. We show that the reconstruction can be efficiently determined as an
anisotropic minimal surface which favors not only locations of good photoconsistency but also
orientations that are consistent with the specified normal field. By adaptively reducing the
smoothing along the predetermined directions, the inherent shrinking bias of minimal surface
models is alleviated. We show that relaxation techniques can still be applied to this general
framework to derive a convex optimization problem and find a globally optimal solution.
Additionally, we explore minimal surface models in more detail and provide an exact math-
ematical characterization of both the inherent shrinking bias and the scale dependency. As
an alternative, we propose a minimal ratio model addressing these limitations. It is based
on solving a sequence of convex optimization problems. We prove that the proposed minimal
ratio solution does not suffer from the above problems. Firstly, it does not exhibit a shrink-
ing bias and allows for better reconstructions of concavities and protrusions. In particular,
we prove that any disjoint surface with the same energy can be added without affecting the
overall energy costs. Secondly, the minimal ratio formulation does not have any tuning pa-
rameters and is shown to be scale invariant. These properties are confirmed in experimental
evaluations.
The main results in this chapter are published in [69, 74].

5.2 Anisotropic Minimal Surface Model

Anisotropic Metrics

This paragraph introduces the main concept of anisotropic metrics preferring certain orienta-
tion selectivity by generalizing the already encountered weighted minimal surface model.
Our starting point is a classical multiview stereo approach introduced in Chapter 3 (see (3.1)).
According to it, the most photoconsistent shape is obtained by minimizing

E(S) =
∫

S
ρ(s) ds, (5.8)

where ρ : V → (0, 1] denotes a photoconsistency map. The model encourages the surface
to pass through points with high observation agreement. Its minimization identifies shapes
with minimal overall area with respect to a local isotropic metric induced by ρ. However,
the above formulation does not explicitly model the orientation of the estimated shape. To
this end, in case of given surface orientation, a generalization has to be developed. This



5.2 Anisotropic Minimal Surface Model 99

x

v

x

v

isotropic anisotropic
metric metric

Fig. 5.2: Local distance maps. Examples of local distance maps –
√
vT v = 1 (isotropic case) and√

vTDv = 1 (anisotropic case). While isotropic metrics treat all directions equally, anisotropic metrics
possess directional selectivity.

can be achieved by switching to a more general metric and introducing a family of positive
semi-definite anisotropic tensors D(x) ∈ R3×3, x ∈ V tolerating certain directional selectivity.
Now, the minimal surface model (5.8) reads

E(S) =
∫

S

√
NS(s)TD(s)NS(s) ds. (5.9)

Obviously, the tensors D(x) can be designed to energetically favor certain shape orientations
while suppressing others. Note that D is defined pointwise, i. e. it is spatially varying.
However, in the remainder of this section, we will omit the argument for the sake of simplicity.
The energy model (5.9) can sill be interpreted as a minimal surface formulation according to
the Riemannian metric induced by D ( i. e. |v|D =

√
vTDv ).1 The Euclidean metric, which

treats all spatial directions equally, appears as a special case with D = I, where I ∈ R3×3

denotes the identity matrix. Examples of local distance maps in 2D of the Euclidean and
the more general Riemannian metric are visualized in Fig. 5.2. The weighted minimal surface
model (5.8) also appears as a special case for D = ρ2 I.
Now, we are confronted with the question of defining the family of anisotropic tensors D
appropriately. Let us assume that a vectorfield F : V → R3 is provided representing an
estimate of the unit outward orientation of the sought-after shape. In practice, meaningful
normal estimates can be computed only for points on the surface of the observed object. For
all other points we can set D = ρ2 I, which corresponds to the conventional isotropic case.
Thus, in the sequel, we assume F : V → S2 ⊂ R3. In Section 5.2 we give more details on
how orientation information can be obtained from the input images. Based on this data,
we would like to suppress regularization along the corresponding normal and encourage the
process along the tangent plane so as to enforce the surface to assume the desired orientation.
Moreover, the photoconsistency map ρ, which encodes spatial preference, should be taken into
account. This can be achieved by setting

D = ρ2

(
τFF T +

3− τ

2
(I − FF T )

)
, (5.10)

where τ ∈ [0, 1] is a weighting parameter that controls the distortion of the corresponding
metric, i. e. the tolerance of the normal field F . In effect, the formulation in (5.10) realizes
a basis transformation and subsequent scaling. The first term treats the component along

1. In a mathematically rigorous sense, a Riemannian metric is defined as a family of scalar products. Here,
with a Riemannian metric we refer to the variable metric induced by the family of scalar products
〈v1, v2〉D,x =

p
vT
1 D(x)v2.
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F and scales it by τ , whereas the second one affects the tangential components. It is easy
to verify that the choice τ = 1 gives the original model (5.8). On the other hand, τ = 0
will completely turn off smoothing along the vectorfield F . In our experiments we found out
τ = 0.15 to be a good compromise for a moderately noisy normal field.
One could wonder about the concrete definition of D in (5.10). To justify this formulation,
we show some favorable properties resulting from it.

Proposition 7. For a normalized vector F , ρ > 0 and τ ∈ [0, 1] the matrix D defined in
(5.10) is symmetric and positive semi-definite with tr(D) = 3ρ2.

Proof. The symmetry of D is obvious.
In order to show that D is positive semi-definite, we observe for v ∈ R3

vTDv = ρ2 3τ − 3
2

(
vTF

)2
+ ρ2 3− τ

2
|v|2 ≥ ρ2 τ |v|2 ≥ 0

due to |F | = 1.
Finally, we obtain

tr(D) = ρ2

(
3τ − 3

2
|F |2 +

3 (3− τ)
2

)
= 3ρ2.

The condition that D is symmetric and positive semi-definite justifies the correctness of the
definition of the proposed anisotropic metric. The condition that tr(D) does not depend on
the choice of the parameter τ assures that the overall smoothing remains fixed. This is an
important property as it makes the model in (5.9) suitable for a smoothness term in a more
complex variational formulation. In this sense, the normal information is integrated in a soft
manner.
Moreover, it should be noted that the inverse of the matrix in (5.10) as well as its square root
can easily be computed as

D−1 =
1
ρ2

(
1
τ
FF T +

2
3− τ

(I − FF T )
)

D1/2 = ρ

(
√
τFF T +

√
3− τ

2
(I − FF T )

)
.

(5.11)

This will be useful for optimization purposes (see Section 5.2).

Fusing Photoconsistency, Orientation and Silhouettes

In this paragraph, we propose specific energy functionals based on the anisotropic minimal
surface model in (5.9), where it serves as a data-aware smoothness term. In particular, we
generalize already encountered variational formulations.

Adding Regional Terms

As previously discussed, a undesired property of minimal surface models of the form (5.9) is
that the empty set always exhibits a global minimum. One way to avoid this trivial solution is
to derive additional information from the images giving a closer specification of the observed
object. This can be achieved by introducing regional maps ρobj : V → R and ρbck : V → R
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defining costs for each point within the volume for being inside or outside the imaged shape,
respectively. Now, we obtain the following energy model

E(S) = λ

(∫
int(S)

ρobj(x) dx+
∫

ext(S)
ρbck(x) dx

)

+
∫

S

√
NS(s)TD(s)NS(s) ds,

(5.12)

where int(S), ext(S) ⊂ V denote the surface interior and exterior, respectively, and λ ∈ R is a
weighting parameter. In Chapter 2 and 3, we became acquainted with different methodologies
for defining ρobj and ρbck based on object outlines and multiview stereo.
Next, we tackle the optimization of the functional (5.12). To this end, the first steps are a
conversion to an implicit representation u = 1int(S), where 1int(S) denotes the characteristic
function of int(S), and subsequent relaxation. This yields

E(u) = λ

∫
V

(ρobj(x)− ρbck(x))u(x) dx+
∫

V

√
∇u(x)TD(x)∇u(x) dx, (5.13)

where u ∈ Crel = { û | û : V → [0, 1] }. The above formulation is derived from the relations
NS = − ∇u

|∇u| and ds = |∇u|dx. Note that the “binary” version of (5.13), i. e. optimization over
the set of binary functions u ∈ Cbin = {û|û : V → {0, 1}}, is equivalent to (5.12). Fortunately,
the optimization of (5.12) turns out to be as simple as minimizing (5.13) over Crel, which
exhibits a constrained convex optimization problem (see Proposition 1). In particular, we
obtain

Theorem 9. Let u∗ : V → [0, 1] be a global minimizer of the functional (5.13). Then, the
characteristic functions of all upper level sets (i.e. thresholded versions)

Σµ,u∗ = {x ∈ V |u∗(x) > µ}, µ ∈ (0, 1), (5.14)

of u∗ are also global minimizers of (5.13).

Proof. The statement follows directly from the fact that the functional in (5.13) is a special
case of the one in (1.6) (see Theorem 6).

Hence, we can find a global minimum of (5.12) by minimizing the convex functional in (5.13)
over the convex Crel and thresholding the result at some µ ∈ (0, 1). We can conclude that
incorporating the proposed generalized anisotropic model does not entail any substantial
difficulties with the optimization and retains globality of the solution.

Incorporating Silhouette Constraints

In certain practical scenarios, obtaining reliable volume subdivision terms may be a chal-
lenging task. In such cases, a reasonable alternative could be to retain the original minimal
surface model (5.9), but to restrict the domain of feasible shapes in order to exclude the trivial
solution. The object silhouettes serve as a useful tool that could provide such constraints

E(S) =
∫

S

√
NS(s)TD(s)NS(s) ds,

s. t. πi(S) = Sili ∀ i = 1, . . . , n.
(5.15)

Note that for D = ρ2I the above formulation boils down to the model proposed in Chapter 4.
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Unfortunately, global optimization of (5.15) is not a trivial task. Nevertheless, a global mini-
mum can be obtained up to an energetic upper bound. Reverting to an implicit representation
and subsequent relaxation yields

E(u) =
∫

V

√
∇u(x)TD(x)∇u(x) dx,

s. t. u ∈ [0, 1]∫
Rij

u(r) dr ≥ 1 if j ∈ Sili∫
Rij

u(r) dr = 0 if j /∈ Sili,

(5.16)

where Rij denotes the visual ray through pixel j of image i.2 It is evident that (5.16) exhibits
a constrained convex optimization problem for which the global minimum can be obtained.
Since we are interested in finding minimizers of the original non-convex problem (5.15), we
threshold the solution of the convex problem umin appropriately

ũ(x) =
{

1, if umin(x) ≥ µ
0, otherwise

, (5.17)

where

µ = min
{(

min
i∈{1,...,n},j∈Sili

max
x∈Rij

umin(x)
)
, 0.5

}
. (5.18)

In analogy to (4.12), the threshold is estimated such that the computed binary solution is
the closest one that still fulfills exact silhouette consistency. Note that minimizing (5.15) is
equivalent to minimizing the “binarized” version of (5.16) (where u ∈ [0, 1] is replaced by
u ∈ {0, 1}).
Now, a question about the benefits from the proposed formulation arises as we do not optimize
the original problem (5.15) in a globally optimal manner. Fortunately, all globality guarantees,
obtained for weighted isotropic minimal surfaces (see Chapter 4), carry over to this more
general case.

Proposition 8. Let u′ be a (global) minimum of the “binary” version of (5.16), ũ the com-
puted solution and umin a (global) minimum of (5.16). Then, a bound γ(umin, ũ) exists such
that

E(ũ)− E(u′) ≤ γ(umin, ũ).

Proof. As the introduced anisotropic metric preserves convexity, the proof is analogous to the
proof of Proposition 4.
Since the binary functions form a subset of the real-valued functions, we have the relation

E(umin) ≤ E(u′) ≤ E(ũ)

As a consequence, we obtain the inequality

E(ũ)− E(u′) ≤ E(ũ)− E(umin).

Again, we can conclude that, also for this variational framework, incorporating the proposed
anisotropic model does not affect any globality guarantees obtained for the solution.

2. Actually, modeling silhouette constraints in a continuous setting requires representing the thickness of the
material by a parameter δ > 0 (see (4.8)). Yet, for the sake of simplicity, we set δ = 1, which makes sense
from a discrete point of view.
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(a) (b) (c)

Fig. 5.3: Surface normal estimation. (a) The orientation of a point in space is obtained, based on a local
planar patch. The optimal orientation is given by the maximal photometric agreement of the projections
of the patch onto the images, where it is visible. (b) A point cloud for the data set in Fig. 5.5, generated
with the software at [100]. (c) Corresponding color-coded normal vectors.

Implementation and Numerics

In this paragraph, we present a particular implementation of the proposed energy models and
discuss their numerical optimization.

Data Term Computation

Following the formulation in (5.10), we need to define multiple data measures: a photocon-
sistency map ρ, regional subdivision costs ρobj , ρbck and an outward normal field F .
The photoconsistency estimation that we used in our experiments is based on the voting
scheme proposed in Chapter 3. Moreover, we used the underlying propagating approach to
derive volumetric assignment costs for object interior/exterior.
In order to obtain an estimate of a normal field F representing the surface orientation, we
assume a sparse oriented point cloud

P = { pi | pi ∈ V }
O =

{
vi | vi ∈ S2

}
.

As discussed in Chapter 3, such data can be obtained via an optimization procedure over
the local photometric consistency (see Fig. 5.3). In our experiments, we used the approach
of [41], an implementation of which is publicly available at [100]. According to it, the most
truthful surface normal is obtained from the distortion of the projected local tangent patch.
A sample oriented point cloud for a real image sequence, obtained with the above procedure,
is visualized in Fig. 5.3 (b), (c). Based on this data, we define the vectorfield F as

F (x) =
{
vi, if x = pi

0, otherwise
. (5.19)

In practice, we replace F with a semi-dense blurred version F̃ in order to account for inaccu-
racies due to image noise.

Primal-Dual Optimization

As mentioned previously, (5.13) and (5.16) pose classical constrained convex optimization
problems. Hence, any iterative local optimization procedure will provide the global minimum.
However, the particular choice of minimization method will affect the speed of convergence.
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As we already encountered similar variational models in Chapter 2, 3 and 4, one could ask
if the optimization procedures proposed there can be adapted to the current formulations.
While the introduced anisotropic minimal surface model preserves convexity, the numerical
optimization of the arising convex problems is, in this case, slightly more challenging. In the
following, we generalize the previously adopted primal-dual scheme.
First, we observe that the energy functionals in (5.13) and (5.16) are both of the form

E(u) =
∫

V

√
∇uTD∇u dx+

∫
V
fu dx, (5.20)

where f : V → R summarizes the constant part not dependent on u, i. e. f = ρobj − ρbck

for the first energy model and f = 0 for the second one. Crucial in the proposed numerical
procedure is the splitting of D as D = D1/2D1/2. Following a dual formulation, we introduce
an auxiliary variable ξ : V → R3 which allows for the following conversion

E(u) =
∫

V

√
∇uTD∇u dx+

∫
V
fu dx

=
∫

V
|D1/2∇u| dx+

∫
V
fu dx

= max
|ξ|≤1

∫
V
〈ξ,D1/2∇u〉 dx+

∫
V
fu dx.

(5.21)

Now, we obtain a new functional

E(u, ξ) =
∫

V
〈ξ,D1/2∇u〉 dx+

∫
V
fu dx (5.22)

that should be minimized with respect to u and maximized with respect to ξ under the
constraints u ∈ Cgen, where Cgen = Crel in the first case and Cgen = D (see (4.10)) in the
latter case, and |ξ| ≤ 1. This states a typical saddle point problem that can be solved by
a projected gradient descent/ascent strategy. Denoting by K = { ξ : V → R3 | |ξ| ≤ 1 } a
vectorfield mapping within the unit ball, a primal-dual optimization scheme for the anisotropic
model in (5.20) can be described as follows.
We choose (u0, ξ0) ∈ Cgen×K and let ū0 = u0. We choose two time-steps τ, σ > 0. Then, we
iterate for k ≥ 0

ξ(k+1) = ΠK(ξ(k) + σ(D1/2∇ū(k)))

u(k+1) = ΠCgen(u(k) + τ(div(D1/2ξ(k+1))− f))

ū(k+1) = 2u(k+1) − u(k),

(5.23)

where ΠK and ΠCgen denote projections onto the corresponding sets.
Both projections are realized by simple normalization and clipping, respectively, as described
in Chapter 2, 3 and 4. Note that the matrix square rootD1/2 can easily be computed according
to the construction (see (5.11)). Recall, however, that D1/2 is, in general, spatially varying.

5.3 Minimal Ratio Model

While minimal surface models, like the ones in (5.8) and (5.9), are shown to provide good
reconstructions and robustness to noise, they suffer from two important shortcomings.

• Minimal surfaces are known to exhibit a shrinking bias. In particular, the global op-
timum is always the empty set. As already discussed, this trivial solution can be sup-
pressed by restricting the optimization to a given region or by introducing additional
data terms or constraints. Nevertheless, the shrinking bias still prevails in the sense
that indentations and protrusions are energetically disfavored.
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• The traditional linear model of data terms plus regularity requires choosing an appropri-
ate weighting parameter (see Chapter 2 and 3). As discussed in [93], this weight cannot
be estimated automatically as it defines the spatial scale at which reconstructions are to
be computed. In other words, this linear model is not scale invariant. For a given object
the quality of reconstruction highly depends on the spatial scale at which it is perceived.
Usually, the appropriate parameter, balancing between data fidelity and smoothness, is
set by the user. Yet, this is a cumbersome task which may require multiple test runs.

In this section, we propose an alternative energy model – the minimal ratio model – which
avoids these limitations. Surprisingly, it is also amenable to convex relaxation.
If F : V → S2 denotes an outward normal field and ρ : V → (0, 1] – a classical photoconsis-
tency map, the minimal ratio model involves solving3

E(S) = −

∫
S
〈NS(s), F (s)〉 ds∫

S
ρ(s) ds

→ min . (5.24)

Since during minimization the above energy functional becomes negative, optimal surfaces aim
at maximizing the numerator magnitude while minimizing the denominator. Minimization of
(5.24) gives a 3D shape that optimally fulfills photoconsistency and normal field alignment
criteria. Yet, in contrast to the traditional linear model, this is achieved without the specifica-
tion of any parameters. Note that the functional in (5.24) exhibits a fairly different structure
than the ones considered so far.
In the following, we discuss some important properties of the minimal ratio model.

Absence of a Shrinking Bias

We start with the shrinking bias inherent to the minimal surface model. It consists in the
property that the model poses a strong preference to shapes of small overall surface area.
The following proposition is a precise statement that ratio optimization does not exhibit a
shrinking bias.

Proposition 9. Let S, S′ ⊂ V be two arbitrary disjoint surfaces with the same ratio energy:
E(S) = E(S′). Then, adding the surface S′ to the surface S does not affect the overall energy,
i. e. E(S ∪ S′) = E(S).

Proof. For simplicity, we will denote the numerator and denominator in (5.24) by N(S) =
−
∫
S〈NS(s), F (s)〉 ds and D(S) =

∫
S ρ(s) ds.

From the condition E(S) = E(S′) we can derive

N(S′) =
D(S′)N(S)

D(S)

and hence

E(S ∪ S′) =
N(S) +N(S′)
D(S) +D(S′)

=
N(S) + D(S′)N(S)

D(S)

D(S) +D(S′)

=
N(S)
D(S)

= E(S).

3. Alternatively, we could use the proposed anisotropic minimal surface model in the denominator. Yet, we
refuse to use it here as we want to explore the properties of both models separately.
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The above claim states that one can iteratively expand a given surface by surface elements of
the same ratio cost without affecting the total energy. Similarly, removing areas of the same
ratio cost does not decrease the energy, which implies that the model has no shrinking bias.
This is in contrast to the minimum surface model (see (5.8) and (5.9)), where the energy
would simply double (or halve) when adding (or removing) same cost surface elements.
The absence of shrinking bias implies that the ratio optimization does not have any inherent
preference for a specific geometry. Hence, its accuracy does not depend on the presence of
protrusions or indentations on the reconstructed surface.

Scale Invariance

Next, we show that the minimal ratio model (5.24) is scale invariant.

Proposition 10. For any arbitrary surface estimate S and scaled version S′ = γS with γ > 0,
the ratio energy remains unchanged, i. e. E(S) = E(S′), provided that the data remains fixed

F (x) = F (γx)
ρ(x) = ρ(γx).

Proof. Via change of variables, we obtain

E(S′) = −

∫
S′
〈NS′(s), F (s)〉 ds∫

S′
ρ(s) ds

= −
γ2

∫
S
〈NS(s), F (s)〉 ds

γ2

∫
S
ρ(s) ds

= E(S).

The above property of the model is particularly useful when applying a multiresolution scheme.
In that case, the scale invariance guarantees that a correct solution is computed at each res-
olution level without the cumbersome need to adjust respective parameters. Note that using
the same weighting parameter at all levels will not give a constant smoothing performance.

Remarks. While absence of a shrinking bias and scale invariance are useful properties, there
are practical cases, where the proposed minimal ratio model will not give a satisfactory 3D
model. For example, in the presence of strong noise in the data terms, one may wish to
suppress it by increasing the regularization. Yet, the minimal ratio model does not explicitly
take the noise level into account and always finds a scale-invariant shape, which may result
in a noisy reconstruction. Analogously, if the observed object exhibits small-scale surface
details, which have to be preserved, it makes sense to reduce the smoothing effect during the
reconstruction process. In this case, ratio minimization could deliver an oversmoothed recon-
struction. Nevertheless, the minimal ratio model stands out from all other models considered
so far with the aforementioned properties. They make it appealing not only from a theoretical
point of view, but also from a practical point of view, as they guarantee a reasonable result
in a “non-degenerate” scenario without the need for specifying any parameters.
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Continuous Global Optimization

While the above observations indicate that it is worthwhile studying minimal ratio formula-
tions, the major computational challenge is to actually solve the optimization problem (5.24).
A closer look at the ratio model doesn’t suggest the existence of a straightforward convexifi-
cation strategy. Surprisingly, a global minimum of (5.24) can still be obtained by solving a
sequence of convex optimization problems, as we show in the sequel.
First, we apply the divergence theorem to convert the integral over the surface orientation
to a regional integral over the surface interior. Thus, we obtain the following equivalent
formulation

E(S) = −

∫
int(S)

divF dx∫
S
ρ(s) ds

, (5.25)

where int(S) ⊂ V denotes again the interior of S. The next step is a standard one – we switch
to an implicit representation u = 1int(S), where 1int(S) signifies the characteristic function of
int(S), and relax the resulting binary condition. This yields

E(u) = −

∫
V

divF · u(x) dx∫
V
ρ(x)|∇u(x)| dx

,

s. t. u ∈ [0, 1].

(5.26)

Now, we come to a central observation. We note that the Dinkelbach’s method for fractional
optimization [30] can be applied to find the minimal ratio in (5.26). It consists in sequentially
minimizing

G(u, λ) = −
∫

V
divF · u(x) dx− λ

∫
V
ρ(x)|∇u(x)| dx,

s. t. u ∈ [0, 1]
(5.27)

for different values of λ. Now, it is crucial to observe that, for a fixed parameter λ, (5.27)
exhibits a constrained convex optimization problem of the form (3.4) that we regarded in
Chapter 3. Hence, for each subproblem the global minimum can be obtained. Fortunately, the
ability to optimize each subproblem globally implies the global optimizability of the original
problem (5.26).
First, we present the minimization procedure before discussing its correctness. In summary,
we have the following simple scheme for minimizing (5.26)

(0) Initialize: pick u arbitrary and set λ = E(u).

(1) Compute minimizer u∗ of G(., λ).

(2) Set u := u∗ and λ := E(u∗).

(3) If λ has decreased go to step (1), otherwise stop.

Now, we prove the correctness of the algorithm.

Proposition 11. The above optimization procedure computes a (global) minimum of (5.26).
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cross-section data terms

Fig. 5.4: Volumetric data terms. Visualized are cross-sections through both utilized data volumes for the
“dinoRing” image sequence (see Fig. 5.7). Left: Corresponding slice. Right: Inverted regional term −ρint

specifying the surface interior (above) and photoconsistency measure ρ (below) for the given volume slice.
Intensity values correspond to estimated costs.

Proof. As before, we denote N(u) = −
∫
V divF ·u(x)dx and D(u) =

∫
V ρ(x)|∇u(x)|dx. Upon

convergence, the method gives a solution umin and a ratio λmin such that λmin = E(umin).
Convergence implies that G(umin, λmin) = 0 and umin = arg minG(u, λmin). From these two
statements it follows

0 = N(umin)− λminD(umin) ≤ N(u)− λminD(u)

for all u that fulfill the constraints in (5.26). Hence, we obtain

λmin ≤
N(u)
D(u)

= E(u)

for all feasible functions u, thus λmin is the optimal ratio.

So far, we have discussed the minimization of the relaxed problem (5.26). Since we are
interested in finding minimizers of the original binary problem (5.25), a question about the
validity of the thresholding theorem in this case arises. In fact, the thresholding theorem is
applicable to each of the subproblems, which allows for its generalization to the minimal ratio
model (5.25).

Theorem 10. Let u∗ : V → [0, 1] be a global minimizer of the functional (5.26). Then, the
characteristic functions of all upper level sets (i.e. thresholded versions)

Σµ,u∗ = {x ∈ V |u∗(x) > µ}, µ ∈ (0, 1), (5.28)

of u∗ are also global minimizers of (5.26).

Proof. As mentioned above, the proof is based on the observation that all subproblems in-
volved in the optimization of (5.26) are of the general form (1.6) for which the above statement
was proven (see Theorem 6). Hence, the above optimization procedure will still give a globally
optimal solution if we replace the minimizer u? in step (1) by a thresholded version 1Σµ,u? .

Implementation and Numerics

In this section, we give more details on the particular choice of data terms and the numerical
optimization of the proposed minimal ratio model.
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Data Terms

Following the formulation in (5.24), we need to define two data measures: a photoconsistency
map ρ : V → (0, 1] and an outward normal field F : V → S2.
Once again, we used the voting scheme proposed in Chapter 3 to obtain a photoconsistency
map ρ.
Instead of directly estimating a normal field F representing the shape orientation, we compute
a regional term ρint assigned to the interior of the surface, which can be interpreted as diver-
gence of a corresponding vectorfield (see (5.25)). In order to obtain meaningful orientations,
ρint should be defined only in a vicinity of the surface with positive values inside and negative
values outside of it. A respective vectorfield F : V → S2 with divF = ρint can be derived as

F1(x1, x2, x3) =
1
3

∫ x1

0
ρint(x′1, x2, x3) dx′1

F2(x1, x2, x3) =
1
3

∫ x2

0
ρint(x1, x

′
2, x3) dx′2

F3(x1, x2, x3) =
1
3

∫ x3

0
ρint(x1, x2, x

′
3) dx

′
3,

(5.29)

where F = (F1 F2 F3)T . Note that this definition is unique up to the addition of a divergence-
free vectorfield. In our implementation, we used the propagating scheme proposed in Chapter
3 to compute ρint within a band of 3 voxels around the hypothetical surface.
A real example of estimated data volumes ρ and −ρint is depicted in Fig. 5.4.

Numerical Optimization

As mentioned previously, the minimization of (5.26) involves solving a sequence of convex
optimization problems of the form (5.27). Following the discussion in Chapter 3, the primal-
dual method offers an efficient numerical scheme for solving them. In our experiments, we
apply this procedure by initializing in each step (consisting in solving one subproblem) with
the result from the previous iteration. See Chapter 3 for more details.

5.4 Experiments

In this section, we explore experimentally the behavior of the anisotropic minimal surface
model and the minimal ratio model.

Anisotropic Minimal Surface Model

In Fig. 5.5, the potential of the anisotropic minimal surface model (5.15) is demonstrated
by comparing it to the isotropic model proposed in Chapter 4 as well as to a purely normal-
based reconstruction approach [60]. The imaged object of a bird figurine is geometrically quite
challenging due to the presence of thin structures like the wings as well as fine-scale details
on them like the feathering. The normal information is able to capture a big part of the high-
frequency content, but its large-scale accuracy suffers at some locations due to weak texture,
occlusions or strong projective distortion. As a consequence, the Poisson reconstruction [60]
exhibits a quite high degree of detailedness, but also some large-scale artifacts. Expectedly,
the isotropic minimal surface model accurately recovers the wings and the legs due to the
integration of silhouette constraints, but fails to retrieve the feathering as the photoconsistency
map is incapable to encode such high-frequency information. Note that the photoconsistency
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input images (4/21)

Poisson reconstruction [60]

isotropic minimal surface model

anisotropic minimal surface model

Fig. 5.5: Bird sequence. First row: 3 out of 21 input images of resolution 1024 × 768. Second row:
Normal-based Poisson reconstruction obtained from the normal field in Fig. 5.3. Third row: Isotropic
minimal surface reconstruction obtained from silhouettes and photoconsistency information (see Chapter
4). Fourth row: Anisotropic minimal surface reconstruction obtained from silhouettes, photoconsistency
and normal information by minimizing (5.15).

is practically not meaningful for surface pieces of thickness up to 2 voxels. In contrast, the
proposed anisotropic minimal surface model (5.15) delivers a genuinely accurate reconstruction
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dinoSparseRing (16 images) dinoRing (48 images)

isotropic model

anisotropic model

Fig. 5.6: Dino sequences. See Fig. 3.6 for example input images. First row: Reconstruction with the
isotropic minimal surface model (see Chapter 4). Second row: Reconstruction with the proposed anisotropic
model (5.12) which additionally takes surface normal information into account. Note that the incorporation
of normal information generally improves the reconstructions, especially at locations of weak texture, even
though the improvements are minor.

isotropic anisotropic
model model

dinoSparseRing 0.53 mm / 98.3 % 0.48 mm / 98.6 %

dinoRing 0.43 mm / 99.4 % 0.42 mm / 99.5 %

Tab. 5.1: Quantitative evaluation of the reconstructions in Fig. 5.6.

result by integrating silhouette, photoconsistency and normal information. In particular, all
relevant surface details as well as a big portion of the fine-scale structure are recovered. A
multi-modal formulation seems to be the best recipe to address objects of the given complexity.
We proceed with a quantitative evaluation of the anisotropic model in (5.12) on the already
encountered “dinoSparseRing” and “dinoRing” image sequences. The reconstructions with
energy model III proposed in Chapter 3 and the anisotropic model in (5.12) are depicted in
Fig. 5.6 and quantitative numbers are given in Table 5.1. The experiment demonstrates that
the incorporation of normal information generally improves the reconstructions, especially at
locations of weak texture, even though the improvements are minor. This is not surprising
since the regional terms play a decisive role in this model, i. e. the normal information is used
only to enhance the reconstructions.

Minimal Ratio Model

Now, we focus on the minimal ratio model given in (5.24).
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ratio = -0.0001 ratio = -1.68774 ratio = -2.49476

Fig. 5.7: Ratio minimization for the “dinoRing” image sequence. Reconstructions at different iteration
steps and corresponding ratios. The leftmost 3D model poses the initialization, the middle one – an
intermediate reconstruction and the rightmost – the final one. Note that the amount of regularization
progressively increases during the optimization.

(isotropic) minimal surface model minimal ratio model

Fig. 5.8: Minimal surface model vs. minimal ratio model (“dinoRing” image sequence). Note that the
minimal surface model produces clear oversmoothing effects by filling in deep concavities (e.g. at the legs).
In contrast, the minimal ratio model, which is free of shrinking bias, accurately recovers the complete
geometry.

Fig. 5.7 shows reconstructions at different iteration steps during the process of ratio minimiza-
tion for the “dinoRing” image sequence. Note that the amount of regularization progressively
increases during the optimization while the ratio number decreases. The rightmost 3D model
poses the final result at ratio −2.49476. It was reached after 6 iteration steps by starting from
an initial ratio of −0.0001. Recall that the final reconstruction exhibits an optimal 3D shape
in terms of scale invariance.

As previously mentioned, the absence of a shrinking bias is an important property of the min-
imal ratio model. In Fig. 5.8, we demonstrate this property experimentally on the “dinoRing”
sequence. The data set seems to be a very challenging test scenario for the minimal surface
model which produces clear oversmoothing effects by filling in deep concavities (e. g. at the
legs). In contrast, the minimal ratio model, which is free of shrinking bias, accurately recovers
the complete geometry. Note that none of the compared models uses a weighting parameter
allowing to control the amount of desired smoothing. On that condition, the minimal surface
model strongly depends on the accuracy of the estimated photoconsistency measure and on
the geometry of the recovered shape. In contrast, the success of the minimal ratio model is
not affected by the particular structure of the reconstructed object.
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Computational Time

Obviously, the proposed energy models are suitable for a GPU implementation as they could
be considered as generalizations of already encountered formulations. On a PC with 2.83
GHz, equipped with a NVIDIA Tesla C2070 graphics card, we measured computational times
of 14s for the reconstruction of the bird figurine (see Fig. 5.5) with the anisotropic minimal
surface model and 3.1s for the reconstruction of the dinosaur figurine (see Fig. 5.7) with the
minimal ratio model. Note that the computational time of the numerical scheme in (5.23) is
dominated by the realization of the respective projections. Note also that each iteration of the
ratio minimization is initialized with the result from the previous iteration, which significantly
reduces the overall computational costs.

5.5 Discussion

In this chapter, we extended the class of energy models amenable to convex optimization by
including anisotropic metrics and minimal ratios.
We proposed a specific anisotropic metric allowing to integrate provided surface normal infor-
mation in a soft manner. Based on it, we generalized previously proposed variational formu-
lations to include this additional source of information. In particular, we built an anisotropic
minimal surface model completed by exact silhouette constraints to obtain a 3D shape that
optimally fulfills silhouette, photoconsistency and normal alignment criteria. Additionally, we
extended a previously proposed energy model fusing data terms and a regularizer by incorpo-
rating a more general smoothing scheme aware of directional selectivity. We proved that both
models can be optimized globally by means of convex relaxation and thresholding techniques.
In experiments on real-world data, we demonstrated that stereo-based reconstruction results
can be enhanced both qualitatively and quantitatively by incorporating normal information.
Moreover, we proposed a continuous framework for ratio optimization based on relaxation
and sequential convex optimization providing a globally optimal solution. In a theoretical
investigation, we explored some useful properties of the minimal ratio model, in particular
scale invariance and absence of a shrinking bias. The absence of a shrinking bias was confirmed
experimentally on a real-world data set by performing a comparison to the classical minimal
surface model.
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6 Vesicle Membrane Reconstruction
from Fluorescence Imaging

Real is what can be measured.

Max Planck (1858-1947)

So far, we have explored convex models for multiview 3D reconstruction. In this chapter,
we focus on another application related to it – 3D segmentation. We will see that convex
optimization offers a powerful tool to design robust and accurate methods also within this
domain.

6.1 Motivation

Convex optimization proved useful for solving the image-based modeling problem. We con-
sidered different convex formulations fusing various cues like silhouettes, multiview stereo and
surface normal information. We demonstrated the practical value of all of them in terms
of accuracy and robustness. A closer look at these variational approaches reveals that they
follow the same modeling strategy – appropriate volumetric data terms are defined first and
subsequently a 3D surface is obtained by solving a 3D segmentation problem on the un-
derlying volume with respect to the given criteria. Obviously, this optimization machinery
can be applied to solve directly a 3D segmentation problem, where measured volume data is
provided by a respective application. An example poses the reconstruction of a vesicle mem-
brane deformation process under osmotic pressure (see Fig. 6.1). Thereby, the membrane
surface can be measured by exploiting fluorescence properties of the material in a suitable
experimental environment. Yet, typical measurements are noisy due to the imprecision of the
utilized technology. For example, interior and exterior regions could exhibit very similar in-
tensity characteristics while the membrane gauging is usually genuinely blurry (see Fig. 6.1).
This makes the 3D segmentation problem quite challenging and requires a robust and pow-
erful optimization scheme. Once again, we revert to convex modeling which proves viable to
accomplish the given task.

6.2 Previous Work

The segmentation problem is usually addressed in the context of processing one single image
instead of a 3D volume. Image segmentation is one of the fundamental problems in computer
vision and has been extensively studied for decades. It is beyond the scope of the current
work to discuss the myriad of existing works. Here, we focus only on the most closely related
approaches.
Among the existing segmentation techniques variational methods prevail due to their accu-
racy, robustness and mathematical elegance. Since the pioneering work of Kass et al. [59]
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input volume superimposed
slices segmentation

Fig. 6.1: Volumetric 3D segmentation. Left: Multiple input volume slices, right: superimposed segmen-
tation result. The volume data captures the deformation of a vesicle membrane under osmotic pressure,
imaged by means of fluorescence microscopy. Note that the data set is quite challenging due to the similarity
of the intensity characteristics of interior and exterior regions as well as the noisy membrane measurements.

considerable efforts have been made on exploring different energy models relying on various
image cues. Three paradigms have proven to be particularly useful: regional statistics, edge
terms and orientation information.
One of the seminal works demonstrating the potential of regional intensity statistics is [95].
Therein, the segmentation problem is posed in terms of a piecewise smooth or piecewise
constant image approximation with minimal boundary length. More specifically, in the more
general case the following energy functional is being minimized

E(C, f, g) = α

(∫
int(C)

(f(x)− I(x))2 dx +
∫

Ω\int(C)
(g(x)− I(x))2

)
+

µ

(∫
int(C)

|∇f |2 dx +
∫

Ω\int(C)
|∇g|2 dx

)
+ ν

∫
C
ds,

(6.1)

where I : Ω ⊂ Z2 → R denotes the given intensity image, the functions f, g : Ω → R model
the foreground and background intensity characteristics, respectively, and α, µ, ν ∈ R are
constants. The above functional is minimized with respect to the functions f and g as well
as a one-dimensional parametric contour C : θ ⊂ R → Ω separating the image domain into
two regions int(C) and Ω\int(C). This methodology was generalized in [148] and [63], where
regional intensity statistics is estimated to achieve an optimal region assignment

E(C,α1, α2) = −
∫

int(C)
logP (I(x) | α1) dx −

∫
Ω\int(C)

logP (I(x) | α2) dx + ν

∫
C
ds. (6.2)

Thereby, α1 and α2 summarize the statistical parameters for the two regions. Crucial in this
formulation is the modeling of the corresponding probability maps. They could encode not
only characteristic mean intensity values, but also respective variances. The segmentation is
obtained by alternatingly minimizing the underlying energy functional with respect to the
contour and the parameters of the probability models. In [110] and [129], the region parame-
ters are estimated interactively, which allows for globally optimal segmentations according to
the specified user input.
Although the reliance on regional image criteria entails considerable robustness, it often re-
sults in imprecise or oversmoothed segmentations. In order to account for this drawback
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and increase the accuracy of the segmentation, researchers suggested the use of edge terms
attracting the curve (in 2D) or the surface (in 3D) towards the locations of sudden brightness
changes that commonly arise at object boundaries. Geodesic active contours [19, 62] pose the
segmentation problem as a weighted minimal surface model, where the weights reflect a local
Riemannian metric based on the magnitude of the image gradient and therefore account for
the presence of edges. More specifically, the following energy functional is considered

E(C) =
∫

C
g(s) ds, (6.3)

where the weighting function g : Ω → R is defined as

g(x) =
1

1 + |∇I(x)|p
(6.4)

with p = 1 or 2. Note that the model in (6.3) is an analog to the stereo-based weighted
minimal surface model (3.1).
While the incorporation of edge terms can result in substantial improvements of object bound-
ary alignment, it is still unable to handle thin or small-scale geometric details. To this end,
Vasilevskiy and Siddiqi [130] demonstrated the potential of using orientation information to
segment narrow elongated structures like blood vessels. The curve (or surface) outward orien-
tation is provided in the form of a dense vectorfield v : Ω → S2 defined on the image domain.
A typical choice for the normal field is the normalized or unnormalized image gradient. The
segmentation is finally obtained by minimizing

E(C) = −
∫

C
〈Nc(s), v(s)〉 ds, (6.5)

where NC ∈ S2 denotes the outward contour normal. Note that the model in (6.5) is an
analog of the 3D reconstruction model in (5.2).

6.3 Contribution

In this chapter, we propose a unified framework integrating regions, edges and orientation
with the goal of combining the advantages of all utilized paradigms to achieve robust and
accurate 3D segmentations regardless of the available geometric structure. Although the
presented model is built upon established concepts, it differs from alternative methods in
their concrete realization. In particular, we derive an anisotropic formulation, tailored to
the 3D segmentation problem at hand, and a specific edge attraction term. We show that
a globally optimal solution of the constructed model can be obtained by means of convex
optimization. The particular structure of the proposed framework as well as the benefits from
the convex optimization in this context are demonstrated experimentally by comparisons to
alternative state-of-the-art segmentation approaches.
The main results in this chapter are published in [70].

6.4 Anisotropic Energy Model Integrating Regions, Edges and
Orientation

This section introduces the underlying energy functional accounting for various complemen-
tary information sources encoded in the data. As previously mentioned, the proposed model
imposes regional intensity subdivision, edge alignment and orientation integration.
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input foreground background Pobj Pbck
slice region region

Fig. 6.2: Regional subdivision via interactive user input. The user is required to roughly segment one of
the slices of the volume data. Based on the provided segmentation, foreground/background histograms are
built which are, in turn, used to assign intensity likelihoods to each voxel conditioned on being inside or
outside the membrane surface. An example is illustrated for one of the slices in Fig. 6.1. Note that due
to the noisy input data and the similarity in the intensity characteristics of both regions these likelihoods
alone do not allow a reliable separation of object and background.

We start with some notations. Let I : V ⊂ R3 → [0, 1] denote the measured volumetric
data (see Fig. 6.1 for an example). The goal is to partition the volume into two subsets by
identifying the vesicle membrane surface S ⊂ V . We will indicate the interior region according
to a certain surface estimate S as int(S) and the exterior one as ext(S), respectively.
The user is required to specify a rough identification of both regions by marking them in
one of the input volume slices (Fig. 6.2). This user input is used to build initial fore-
ground/background histograms which are adaptively refined during the evolution process.
To this end, a precise segmentation is not needed. Alternatively, strokes or scribbles specify-
ing both regions could be provided. After smoothing and normalization, derived histograms
are used to define probabilities Pobj , Pbck : V → [0, 1] for observing a certain intensity, given
that the respective voxel is inside or outside the membrane surface. However, due to the noisy
input data and the similarity in the intensity characteristics of both regions these intensity
likelihoods do not permit a reliable separation of object and background. Based on the prob-
abilistic volume subdivision, a surface estimate is desired which separates voxels with high
values for Pobj and low values for Pbck from voxels with opposite characteristics. Simulta-
neously, favorable shape properties like smoothness should be imposed. These observations
naturally lead to the following energy model

E(S) = −µ

(∫
int(S)

logPobj(x) dx+
∫

ext(S)
logPbck(x) dx

)
+
∫

S
ds, (6.6)

where µ ∈ R≥0 is a parameter controlling the weighting of data term and regularization. For
a good surface estimate Pobj is expected to be close to 1 within the interior region int(S)
and Pbck close to 1 within the exterior region ext(S). Hence, the overall energy costs will be
low. Analogously, for inaccurate estimates the corresponding probability values will generally
vary, which after applying the logarithm would result in high data fidelity costs. In effect,
minimization of the functional in (6.6) specifies a shape with the desired properties. Note
that both foreground/background histograms are updated permanently by reinitializing them
with the voxel values within the current regions int(S) and ext(S). This adaptive procedure
allows to adjust the histograms to the input data rather than relying on the specified user
input during the entire optimization process.
Unfortunately, regional intensity statistics is not sufficient to achieve the required precision of
the extracted surface due to the noise in the estimated probability maps (see Fig. 6.2). Yet,
a closer inspection of the volume data reveals that the boundary of the interior region can
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Fig. 6.3: Edge attraction function. Plotted is the proposed function g(z) =
1
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−

atan( z−β1
β2

)

π
with

parameters β1 = 0.2 and β2 = 0.025.

be identified as areas, where the intensity changes from dark to bright. This requirement can
be imposed by encouraging the shape normal at each point to align with the local intensity
gradient. Taking this into account, we come up with the following energy model

E(S) = −µ1

(∫
int(S)

logPobj(x) dx+
∫

ext(S)
logPbck(x) dx

)
−µ2

∫
S
〈NS(s),∇I(s)〉 ds +

∫
S
ds,

(6.7)

where NS denotes the (normalized) outward surface normal map. Again, µ1, µ2 ∈ R≥0 are
constant weighting parameters. The second term in (6.7), referred in the literature as flux
[130], favors the alignment of the surface orientation with the vectorfield defined by ∇I. In the
ideal case, when shape normals exactly coincide with the intensity gradient, the correspond-
ing costs will be negative and maximal in magnitude. On the other hand, surface normals
pointing in the opposite direction will cause positive energy costs scaled by the respective
deviation. It is important to note that abrupt intensity changes in the input data, i. e. areas
of high gradient, can be observed not only at the boundary between vesicle membrane and
interior region, but also at the boundary between membrane and exterior region. However,
the estimated region statistics is additionally used to remove this ambiguity. In fact, regional
information and flux are exploited as complementary cues. The balancing between them via
the weighting parameters µ1 and µ2 should be established based on the confidence in both
information sources in the particular situation.
The energy model in (6.7) allows for further extensions by exploiting the fact that the vesicle
membrane can be identified in the input volume data by locations of relatively high intensity
due to its fluorescence properties. A simple but very effective way to take this observation
into account is to replace the Euclidean metric used by the regularization term in (6.7) by a
more general Riemannian measure based on the local data content. This yields the following
functional

E(S) = −µ1

(∫
int(S)

logPobj(x) dx +
∫

ext(S)
logPbck(x) dx

)
−µ2

∫
S
〈NS(s),∇I(s)〉 ds +

∫
S
g(I(s)) ds,

(6.8)
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where g : [0, 1] → R≥0 is a non-negative, monotonically decreasing function. The new weighted
minimal surface term alleviates the smoothing and encourages the shape to pass through
locations of low costs according to g. To this end, the function should be monotonically
decreasing in order to assign low costs to bright locations which vote for the presence of
membrane edges and to penalize dark regions specifying interior and exterior. Yet, this is
not the only requirement that should be followed when designing the function g. When
conducting different measurements, the particular intensity distribution of the volume data,
including the brightness characteristics of the vesicle membrane, may vary. Hence, from a
practical point of view, it is preferable to provide the user with the flexibility to specify the
particular complexion of the weighting function g. We propose the following definition

g(z) =
1
2
−

atan( z−β1

β2
)

π
, (6.9)

where β1 ∈ [0, 1], β2 ∈ (0, 1] are constant parameters. The parameter β1 determines the
location of the inflection point of the function while β2 controls the smoothness of the falling
edge (see Fig. 6.9). In effect, the value of β1 indicates the lower limit of the range in which
a pixel is categorized as “bright”. Large values will restrict the range and classify only high
intensities as vesicle membrane. The parameter β2 can be interpreted as a kind of tolerance
of the estimated intensity splitting. Large values will give a smooth function and will smear
the boundary while small values will sharpen the splitting.
Although the energy functional in (6.8) incorporates a broad variety of data features, it still
does not address one relevant point. The applied scanning technique produces distorted
volume data in a sense that the spacing in different directions is not equal. In fact, the
resolution and, thus, the sampling in the z-direction is significantly coarser than along the
other two spatial dimensions. As a consequence, the isotropic weighted minimal surface term∫
S g(I(s)) ds, which imposes the shape regularity, treats the slicing direction with the same

priority as the other two, which leads to a different amount of smoothing due to the unequal
spacing. Hence, different scaling is needed along this particular direction, which is achieved
by the following anisotropic generalization

E(S) = −µ1

(∫
int(S)

logPobj(x) dx+
∫

ext(S)
logPbck(x) dx

)
− µ2

∫
S
〈NS(s),∇I(s)〉 ds

+
∫

S
g(I(s))

√
NT

S (s)D(s)NS(s) ds

(6.10)
where

{
D(x) ∈ R3×3 | x ∈ V

}
denotes a family of positive semidefinite symmetric tensors

tolerating certain directional selectivity. Compare the above formulation to the discussion of
anisotropic minimal surfaces in Section 5.2. In addition to encouraging the surface to pass
through preselected locations according to the edge map g, the anisotropic energy model
favors certain shape orientations while suppressing others. This can be achieved with the
appropriate design of the tensors D(x). Note that D is defined pointwise. However, in the
remainder of this section, we will omit the argument for the sake of simplicity. Our intention
is to define D in a way that allows for different scaling in the z-direction. This aspect can be
modeled by setting

D =

 1 0 0
0 1 0
0 0 γ

 , (6.11)

where γ ∈ [0, 1] is a constant parameter. Ideally, γ should be set to the squared ratio between
the sampling in the z-direction and the x/y-direction, respectively. Note again that for γ = 1
we obtain the original isotropic model (6.8).
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input slice without edges without flux without anisotropy full model

Fig. 6.4: Contribution of different data features. Results of various energy models obtained by combining
different cues applied to the 3D data set in Fig. 6.1. The segmentation is visualized for slice #38 and
superimposed on the input data. Note that only the complete model (6.10) – shown on the right – yields
tight and accurate segmentation results.

Now, the final model defined in (6.10) contains all constructs necessary to achieve our primary
goal. The relevance of the various features used in the model depends on the particular input
data. In cases, where one of the cues prevails, the corresponding energy term will play a
dominant role, which should be reflected by an adequate parameter setting. However, in a
typical practical situation, all utilized paradigms will have a certain contribution to the final
segmentation result. An example demonstrating the contribution of the different data features
is illustrated in Fig. 6.4. Superimposed segmentation results for one of the slices with different
models, obtained by omitting one of the cues, are visualized. The regional terms alone, which
are based on the specified user input, are not sufficient to produce accurate segmentations,
even in combination with a flux term. This is due to the blurred membrane measurements
resulting in high intensity characteristics in the vicinity of the surface (see Fig. 6.2). Note
that a more accurate user input will not drastically improve the segmentations since more
bright pixels will enter the foreground histogram and diminish the discriminative power of
the regional terms. Substantial increase of the accuracy of segmentation can be observed
by adding the edge attraction term to the model. Yet, the absence of a flux term is still
noticeable, especially at small-scale contour structures. Finally, the effect of the anisotropic
generalization is investigated by comparing it to the original isotropic model (i. e. for γ = 1).
As expected, the isotropic regularizer produces significant oversmoothing at areas of abrupt
slice-to-slice changes. This can be suppressed by reducing the overall regularization, but only
at the cost of degrading the contour alignment along the slice-plane. In summary, regional
terms and edge term seem to be decisive for the overall quality of the segmentation results,
but the flux term and the anisotropic scaling also contribute significantly to the precision of
the estimated boundary.

6.5 Variational Minimization

This section deals with the minimization of the energy functional proposed in (6.10).
First, we observe that the flux term in (6.10) can be rewritten as a regional term over the sur-
face interior via the divergence theorem. Now, we end up with the following energy functional
equivalent to (6.10)

E(S) = −
∫

int(S)
(µ1 logPobj(x) + µ2 ∆I(x)) dx − µ1

∫
ext(S)

logPbck(x) dx

+
∫

S
g(I(s))

√
NT

S (s)D(s)NS(s) ds.
(6.12)
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Note that div(∇I) = ∆I. Basically, the above formulation states that a flux term can be
incorporated by adequately adjusting the interior region statistics. This observation will
considerably facilitate further optimization.

Solution I: Minimization by Level Sets

The level set method [29, 98] is an established technique for minimizing energy functionals for
shape estimation like (6.12). The key idea is to represent the surface implicitly by a function
φ : V → R whose values reflect the signed distance from it, where negative values indicate the
interior region and non-negative values - the exterior, respectively. The formulation proposed
in this section is based on the framework of [22]. Note, however, that the model in (6.12)
surpasses the one in [22] in its completeness. In particular, the anisotropic regularization
scheme poses the main challenge when developing a valid generalization.
The construction of an implicit surface representation implies that both interior/exterior
regions can easily be accessed by means of the Heaviside function

H(z) =
{

1, if z ≥ 0
0, otherwise.

(6.13)

In the level set framework, a surface deformation equation is converted to an evolution equa-
tion with respect to the implicit function φ. Hence, topological changes are handled auto-
matically without additional efforts. By means of the Heaviside function, we can rewrite the
functional in (6.12) as a functional over the set of implicit functions, which yields

E(φ) = −
∫

V
(µ1 logPobj(x) + µ2 ∆I(x)) (1− (H ◦ φ)(x)) dx − µ1

∫
V

logPbck(x)(H ◦ φ)(x) dx

+
∫

V
g(I(x))

√
∇(H ◦ φ)(x)TD(x)∇(H ◦ φ)(x) dx.

(6.14)
The terms 1 − (H ◦ φ)(x) and (H ◦ φ)(x) in the above formulation act as filtering functions
by specifying interior and exterior voxels, respectively. Note that the composite function
H ◦ φ is a binary labeling function identifying both regions. More precisely H ◦ φ ≡ 1ext(S),
where 1ext(S) denotes the indicator function of the exterior region. Note also the relations
NS(x) = ∇(H◦φ)(x)

|∇(H◦φ)(x)| and ds = |∇(H ◦ φ)(x)| dx which give rise to the last term in (6.14).
The first step towards minimizing the functional in (6.14) is to compute its Euler-Lagrange
equation. We obtain (the argument x is omitted for simplicity)

∂E

∂φ
= δ(φ) (µ1 logPobj + µ2 ∆I − µ1 logPbck) + δ′(φ)g(I)

√
∇φTD∇φ

− div

(
δ(φ)g(I)

D∇φ√
∇φTD∇φ

)
= δ(φ) (µ1 logPobj + µ2 ∆I − µ1 logPbck) + δ′(φ)g(I)

√
∇φTD∇φ

− δ′(φ)g(I)
∇φTD∇φ√
∇φTD∇φ

− δ(φ)div

(
g(I)

D∇φ√
∇φTD∇φ

)

= δ(φ) (µ1 logPobj + µ2 ∆I − µ1 logPbck)− δ(φ)div

(
g(I)

D∇φ√
∇φTD∇φ

)
.

(6.15)
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Thereby, δ(.), which denotes the Dirac delta function, appears as the derivative of the Heavi-
side function, i. e. δ(z) = H ′(z). It is not surprising that all terms in the above expression are
scaled by δ(φ) since only the 0-level of φ representing the surface is of interest. In practice,
δ(φ) is replaced by a smoothed version δε(φ) for numerical reasons.
The functional in (6.14) can be minimized via gradient descent by solving the following partial
differential equation

φt = −∂E
∂φ

. (6.16)

Numerically, the above equation can be solved by applying classical discretization schemes
like the forward Euler method. It should be noted that after each update, φ will no longer
reflect the exact distance to the surface. For that reason, the function should permanently be
reinitialized in order to circumvent numerical difficulties.
Although the level set method leads to a tractable numerical scheme and avoids the need
for explicit handling of topological changes, it suffers from one important limitation. Due to
the binary nature of the representation, whereas the localization of the surface is implicitly
encoded by the sign of a distance map φ, this technique always involves optimization over
a set of binary labeling configurations. As a consequence, due to the minimization over a
non-convex domain any iterative procedure can get stuck in a undesired local minimum that
may be far from the expected solution. In effect, the final result strongly depends on the
initialization.

Solution II: Minimization by Convex Relaxation

In this paragraph, we show that convex optimization poses a competitive alternative to the
level set method for minimizing the underlying cost functional (6.10).
First, we observe that the implicit function φ in (6.14) always appears in concatenation
with the binary Heaviside function H. Hence, an equivalent formulation can be obtained by
substituting u = H ◦ φ. This leads to the following minimization problem

E(u) = −
∫

V
(µ1 logPobj(x) + µ2 ∆I(x)) (1− u(x)) dx − µ1

∫
V

logPbck(x)u(x) dx

+
∫

V
g(I(x))

√
∇u(x)TD(x)∇u(x) dx→ min,

s. t. u : V → {0, 1} .
(6.17)

Now, one can notice that the above functional is convex, but the minimization is carried
out over the set of all binary labeling functions which is not convex. As a result, we have a
constrained non-convex optimization problem and obtaining an exact solution is not straight-
forward. Once again, we relax the domain of feasible functions and allow also intermediate
values in the interval [0, 1] as an effective remedy to this problem. Thus, we obtain a more
tractable constrained convex optimization problem

E(u) = −
∫

V
(µ1 logPobj(x) + µ2 ∆I(x)) (1− u(x)) dx − µ1

∫
V

logPbck(x)u(x) dx

+
∫

V
g(I(x))

√
∇u(x)TD(x)∇u(x) dx→ min,

s. t. u : V → [0, 1] .
(6.18)
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Now, we have, as desired, a convex functional optimized over a convex domain. However,
recall that we are interested in solving the original “binary” problem (6.17). Again, we make
use of the thresholding theorem.

Theorem 11. If u∗ : V → [0, 1] is a minimizer of the functional in (6.18), then for almost
any threshold ν ∈ (0, 1) the binary function 1Σν,u∗ (x) : V → {0, 1} with Σν,u = {x | u(x) > ν}
is also a (global) minimizer of (6.18).

Proof. The statement follows directly from Theorem 6 and the fact that the functional in
(6.18) is a special case of the one in (1.6) (when omitting the constant part).

In other words, solving the minimization problem (6.17) boils down to solving (6.18). In the
following, we focus on the numerical minimization of (6.18).
In Section 5.2, we proposed a general anisotropic minimal surface model and discussed different
variational formulations building on it. As the current functional at hand (6.18) contains an
anisotropic regularizer, the numerical scheme in (5.23) can be adapted for its minimization.
However, in the sequel we propose an alternative procedure – a generalization of the linearized
fixed-point iteration method based on Successive Overrelaxation (SOR) introduced in Chapter
3.
The first step is to set up the Euler-Lagrange equation which states a necessary condition for
a minimum of (6.18) (the argument x is omitted for simplicity)

0 = µ1 (logPobj − logPbck) + µ2∆I − div
(
g(I)

D∇u√
∇uTD∇u

)
. (6.19)

The key idea is to solve the above equation directly instead of deriving an evolution PDE
like (6.16). Yet, (6.19) exhibits a non-linear differential equation which is not trivial to be
solved directly. The source of non-linearity is given by the diffusivity ρ = g(I)√

∇uT D∇u
. Thus, a

straightforward way to address this difficulty is to apply a linearization scheme. Starting with
an initialization u0 = 0.5, we can compute ρ and keep it constant. For constant ρ, (6.19) is
linear and spatial discretization yields a sparse linear system of equations which can be solved
efficiently with iterative approaches like SOR. Similar to (3.36), the k-th update of u at voxel
i is computed as

u
(l,k+1)
i = (1− ω)u(l,k)

i + ω

∑
j∈N (i),j<i

ρl
i∼ju

(l,k+1)
j +

∑
j∈N (i),j>i

ρl
i∼ju

(l,k)
j − di∑

j∈N (i)

ρl
i∼j

, (6.20)

where ω ∈ (0, 2) is a fixed relaxation parameter. Thereby, the index l counts the updates in the
diffusivity terms, N (i) denotes the 6-neighborhood of i and di = µ1 (logPobj,i − logPbck,i) +
µ2∆Ii summarizes the constant part of (6.19) that does not depend on u, i. e. the righthand
side of the linear system. Finally, ρl

i∼j denotes the diffusivity between voxel i and its neighbor
j while distinguishing between different spatial directions according to the anisotropic tensor
D. It is defined as

ρl
i∼j =


γ
ρl

i + ρl
j

2
, if voxels i and j are neighbors in the z-direction

ρl
i + ρl

j

2
, otherwise.

(6.21)
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Thus, diffusivities between neighboring voxels are estimated by averaging the corresponding
values which are, in turn, computed as

ρl
i =

g(I)i√
∇ul T

i D∇ul
i + ε2

, (6.22)

where ε = 0.001 is a small constant that prevents the diffusivity to become infinite when
∇ul T

i D∇ul
i = 0 and ∇ul

i is approximated by standard central differences. The overrelaxation
parameter ω has to be chosen in the interval (0, 2) for the method to converge. In our
experiments, we set ω = 1.85. After the linear solver yields a sufficiently good approximation
(we iterated for k = 1, ..., 10), one can update the diffusivities ρl

i and solve the next linear
system. Iterations could be stopped as soon as the energy decay becomes negligible.

6.6 Experiments

This section presents an experimental validation of the proposed approach. Since the segmen-
tation method was developed with focus on a particular application, we give some details on
the data acquisition process before demonstrating its performance on real-world data sets.

Experimental Setup

Materials

To mimic mechanical properties of cell membranes, 1,2-dioleoyl-sn-glycero-3- phosphocholine
(DOPC) was chosen as main lipid component. The addition of 1,2-dipalmitoyl-sn-glycero-
3-phosphoethanolamine-N-(cap Biotinyl) (capBioDPPE) gave rise to a drastically increased
rigidity of the coupling of streptavidin to the lipid membrane. Lipid components were dis-
solved in chloroform and mixed to 1 mg/ml total lipid concentration in a molar ratio of
DOPC/capBioDPPE = 10/1. All lipids were purchased from Avanti Polar Lipids Inc. (AL,
USA) in a purity of at least 99.9%.

Vesicle preparation

Vesicles were prepared by the electroswelling technique [4]. 10 µl of the lipid mixture were
carefully deposited on indium tin oxide (ITO) coated glass slides (Praezisionsglas & Optik
GmbH, Iserlohn, Germany). The lipid films were then dried under vacuum for at least 1
h. For the electroswelling step, the plates were placed in a chamber containing 2 ml of 130
mM sucrose solution (130 mosm/L) in pure water and separated by a 1 mm teflon spacer.
Vesicles were swollen by applying an altering electric field of 1.5 V and 10 Hz for 2 h. After
electroswelling, vesicles were incubated in 70 µg/ml protein solution for at least 2 h at pH 5.5
under isoosmotic conditions.

Experimental environment

Increasing osmotic pressure was generated in a special microscopic chamber designed for ex-
periments using gradual osmotic pressure change (see Fig. 6.5). It consisted of two parts. The
lower chamber part was filled with 2 ml of 130 mM glucose solution (130 mosm/L) and 50
µl of isoosmotic vesicles suspension. To visualize the model membranes in fluorescence mi-
croscopy, fluorescently labeled polymer (dextran-TRITC from Sigma Aldrich Inc., St. Louis,
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Fig. 6.5: Experimental setup. Dialysis through flow chamber for fluorescence microscopy observation of
vesicle folding under continuously increasing hyperosmotic pressures was used. Vesicles were deposited in
the lower chamber in glucose solution with a concentration of clow. This chamber part was separated from
the upper one by a semi-permeable membrane, which allowed a water flow and simultaneously excluded
any other transport between the two chamber parts. The upper chamber had a constantly higher glucose
concentration (cupp) than the lower chamber. The concentration difference was reduced by water flow from
the lower chamber (see small arrows), including vesicle volumes, into the upper chamber. The changed
osmolarity induced vesicle volume loss at constant surface area thereby giving rise to vesicle folding. The
process was observed by a laser scanning microscope.

MO, USA) was added to the glucose solution in a final concentration of 1 µg/ml while the
vesicle lumen remained unlabeled. The fluorescently labeled polymer was uniformly dispersed
in the glucose solution emitting low background intensity, which was bleached during the
experiments. Streptavidin coated vesicle membranes are slightly negatively charged at pH
5.5. The electrostatical interaction between protein coating and fluorescently labeled polymer
resulted in enrichment of polymer molecules on the protein surface increasing the fluorescence
intensity on the vesicle membranes. This process occurred until the accumulation of poly-
mers on the vesicle surfaces was saturated. As lipid bilayers were impermeable to polymers,
vesicle lumens remained completely without fluorescent and appeared dark in the fluorescent
channel, correspondingly.

The upper chamber part was a flow chamber. Isoosmolar glucose solution streamed through
it with a flow rate of approximately 20 mL/min. The two parts were separated and simulta-
neously contacted with each other by a semi-permeable membrane (Reichelt Chemietechnik
GmbH Co, Heidelberg, Germany). This membrane enabled the diffusion of water molecules
between the two chamber parts simultaneously but retained the other dissolved components.
Under isoosmotic conditions (cupp = clow), the two sides were equilibrated. Subsequently,
high concentrated glucose solution (400 mosm/L) flowed through the upper chamber part
(cupp � clow) disturbing the equilibrium state. To compensate the new concentration differ-
ence between the two sides, water flowed from the lower chamber into the upper flow-chamber
until the equilibrium state was reached again. Consequently, the osmolarity in the lower cham-
ber was continuously changed by 0 to 140 mosm/L in 1.5 h. The osmolarities of glucose and
vesicle solutions were determined using a freezing point depression osmometer (Osmomat 030,
Gonotec, Berlin, Germany).
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segmentation of original data

segmentation of interpolated data

Fig. 6.6: Data set #1, vesicle under isoosmotic conditions. First row: Segmentation of raw microscopic
data. Second row: Segmentation of interpolated data. From left to right: Superimposed segmentation
for one of the volume slices, rendered view of the extracted shape, cross-sections through the volume
with superimposed wireframe segmentation result and color-coded mean curvature of the surface [µm−1].
This experiment demonstrates that upsampling the resolution in the z-direction does not improve the
segmentation result, but rather increases the computation time by about a factor of 4.

Microscopic Imaging

Three dimensional membrane curvatures of streptavidin coated giant vesicles were imaged
with a laser scanning microscope (LSM 510, Carl Zeiss MicroImaging GmbH, Jena, Germany)
equipped with a helium-neon laser (543 nm). To detect the fluorescent signal of dextran-
TRITC, a long pass filter LP600 nm was used. The microscope was focused on the vesicles
using a C-Apochromate 40 × /1.20 water immersion objective (Carl Zeiss). Images were
recorded with a typical resolution of 512× 512 pixels in x-y-plane (pixel size 154 nm) and 60
slices in the z-direction (pixel size 390 nm).

Evaluation on Real Data Sets

We demonstrate the performance of the proposed approach on four challenging real data
sets generated with the described laser scanning methodology. Additionally, we present a
comparison to alternative segmentation techniques based on level sets.

Performance

The data sets used in our experiments and the corresponding segmentation results are illus-
trated in Fig. 6.6, 6.7, 6.8 and 6.9. The data sets, acquired under different osmotic pressures,
capture various deformations of the imaged vesicle. The figures depict a superimposed seg-
mentation for one of the volume slices, rendered view of the extracted 3D shape, cross-sections
through the volume with superimposed wireframe segmentation result and color-coded mean
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segmentation of original data

segmentation of interpolated data

Fig. 6.7: Data set #2. See text in Fig. 6.6 for reference. The slight differences in the reconstruction are
most likely due to ghosting artifacts introduced in the interpolation process.

segmentation of original data

segmentation of interpolated data

Fig. 6.8: Data set #3. See text in Fig. 6.6 for reference. Again the interpolation gives rise to ghosting
artifacts.
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segmentation of original data

segmentation of interpolated data

Fig. 6.9: Data set #4. See text in Fig. 6.6 for reference.

cross-section input slice regional map regional map edge map
model-based proposed proposed

Fig. 6.10: Comparison of the data terms utilized by the model-based approach in [149] and the presented
method for slice 104 of the interpolated version of data set #4 (see Fig. 6.9). Although the proposed
regional term exhibits lower separability of object and background than the model-based one, it offers
higher precision due to the underlying global scheme and the integration of shape orientation. Note that
the model-based approach doesn’t use explicit edge information in contrast to the proposed one. See
Fig. 6.11 for comparison of the segmentation results.

data set resolution µ1 µ2 β1 β2 γ

#1 orig. 267× 274× 59 10−4 10−4 0.2 0.025 0.05
#1 interp. 267× 274× 256 10−4 10−4 0.2 0.025 1.0
#2 orig. 258× 257× 56 10−4 10−4 0.2 0.025 0.05
#2 interp. 258× 257× 243 10−4 10−4 0.2 0.025 1.0
#3 orig. 345× 342× 80 10−4 10−4 1.0 10−6 0.05
#3 interp. 345× 342× 305 10−4 10−4 1.0 10−6 1.0
#4 orig. 283× 275× 60 10−4 3 · 10−4 0.2 0.025 0.05
#4 interp. 283× 275× 205 10−4 3 · 10−4 0.2 0.025 1.0

Tab. 6.1: Parameter setting of the proposed approach for all demonstrated experiments.
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superimposed segmentation for one representative slice

volume cross-sections and superimposed segmentation

color-coded curvature

Fig. 6.11: Comparison between the proposed approach and alternative segmentation techniques based
on level sets. First row: Segmentation for one of the volume slices. Second row: Cross-sections through
the volume with superimposed wireframe segmentation result. Third row: Color-coded curvature of the
surface. From left to right: A variant of the model-based approach in [149], a level set implementation of
the proposed energy model, as described in Section 6.5, by using a box-shaped and spherical initialization,
respectively, and convex relaxation, as described in Section 6.5. Note that while the formulation in [149]
involves only local data term estimation and requires a specific initialization, the presented method is general
and relies on global computations.

curvature of the surface. In some cases, intensity variations within the membrane regions
caused high gradients which lead to undesired structures within the membrane. We could
overcome this problem by limiting the gray values to an adequate range. For all test cases
we show segmentation results for both the original raw volumetric data, as obtained with
the described laser scanning microscopy technique, and an interpolated version of the data
on an approximate cubic grid. The parameter setting used in our experiments is specified
in Table 6.1. As can be expected, the anisotropy parameter γ has been adapted appropri-
ately so as to compensate for the sparse volume slicing in the z-direction of the original raw
data. Yet, none of the other parameters has been changed. This allows to assess the effect
of the interpolation process on the quality of the segmentation results. As can be observed,
in both cases the segmentations are quite accurate (see the selected slices). However, they
possess different degrees of smoothness, which is confirmed by the curvature measurements.
This phenomenon can be explained with the appearance of small-scale ghost structures in the
interpolation process. As for the runtimes, on a PC with 2.83 GHz and 8 GB of main memory
we measured computational times in the range 10− 15 minutes for the original raw data sets
and in the range 40−60 minutes for the interpolated data sets. The bottleneck of the proposed
approach poses the numerical optimization. Yet, note that the applied linearized fixed-point
iteration scheme possesses excellent parallelization potential. With a GPU implementation
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the computational times shrink to a couple of seconds.1

The demonstrate experiments cover a wide range of test scenarios. While some of the data sets
(#1 and #3) exhibit little deformation of the imaged vesicle membrane, others (#2 and #4)
capture substantial bending and stretching. Furthermore, data set #3 is characterized by com-
pletely missing edge information, whereas data set #4 features lacking foreground/background
intensity discrimination. The remarkable accuracy of all segmentation results emphasizes the
high practical value of the proposed approach.

Comparison to Alternative Approaches

In order to demonstrate the accuracy and robustness of the proposed approach, we present a
twofold comparative evaluation (see Fig. 6.11). Firstly, we explore the viability of the energy
model by comparing it to a state-of-the-art method. In particular, we implemented a variant
of [149] tailored to the application at hand. Secondly, we compare an implementation of the
proposed energy model with level sets, as described in Section 6.5, and convex relaxation, as
described in Section 6.5.
For the sake of completeness, we briefly overview the approach in [149]. Similar to the proposed
formulation, it is based on a variational framework. Concretely, the following energy functional
is being minimized

E(u) =
∫

V
S(u) u(x) dx+

∫
V
|∇u(x)| dx

s. t. u : V → {0, 1} ,
(6.23)

where the speed function S : V → R is defined as follows

S(x) =
Imax

Imin
− T. (6.24)

Thereby, the function is evaluated only in a tight vicinity around the evolving interface by
considering lines of certain length along its local normals. In practice, S is updated only on
the surface and at voxels in direct contact with it. Imax and Imin denote the maximum and
minimum intensity along the current line. T ∈ R≥0 is a parameter, specified by the user,
that controls the desired intensity contrast and is used to stop the evolution process. Note
that due to its greedy nature the described procedure requires a specific initialization. It
relies on the assumption that the surface can be identified by locations of high edge contrast
while the propagation scheme is initialized within a homogeneous region. Usually, the initial
estimate is placed within the object interior and evolves outwards until the speed function
reaches values close to zero. In our implementation, the initialization was fixed to a sphere
centered in the middle of the volume with radius 10 voxels. Although the above method is
able to handle data of weak foreground/background discrimination effortlessly, its precision
may suffer. The utilized local update procedure could lead to premature termination and
oversmoothing effects (see Fig. 6.11).
In the following, we summarize the main conceptual differences between the approach in [149]
and the proposed one. They are revealed by a direct comparison between both variational
models, given in (6.17) and (6.23).

• While the method in [149] uses a regional term based on the local intensity contrast,
the proposed formulation relies on a more sophisticated computation involving fore-
ground/background distribution modeling and surface orientation alignment. As a re-
sult, the estimated regional map is imprecise, susceptible to noise and only locally

1. See Chapter 3 for a more detailed evaluation.
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defined in the first case and offers a global range and a high degree of accuracy in the
latter case, see Fig. 6.10. It is important to note that while the model-based approach
in [149] requires a specific initialization due to the local nature of its evolution scheme,
the proposed model is global and does not depend on initialization.

• The method in [149] relies on a classical Euclidean regularizer to impose smoothness of
the surface. In contrast, the proposed model uses explicit edge information to avoid over-
smoothing effects and increases the accuracy of the segmentation results. See Fig. 6.10
for an example edge map.

• We even take a further step and develop an anisotropic generalization which allows to
adequately guide the smoothing along particular directions taking into account the den-
sity of the slicing produced by the utilized imaging technology. As a consequence, the
proposed approach can be applied to the measured raw volume data without any modi-
fications while the model in [149] is restricted to cubic voxels and requires interpolation
as a preprocessing step.

• While [149] is based on the level set framework to solve the underlying minimization
problem, we propose the use of convex relaxation which allows for global optimization.
However, this is not a crucial issue for the method in [149] since only local data term
updates are performed.

Fig. 6.11 compares the segmentations obtained with both methods on data set #4. We used
this data since it seems to exhibit the most challenging scenario due to the lack of fore-
ground/background intensity discrimination. It can be observed that the method in [149]
gives a relatively good segmentation result for this challenging data set although it is a por-
tent of a clear shrinking bias limiting the precise localization of the vesicle membrane. In
contrast, the proposed approach demonstrates clear superiority and provides a quite accurate
segmentation.
In order to emphasize the importance of a robust optimization scheme, we compare an im-
plementation of the proposed energy model with level sets, as described in Section 6.5, and
convex relaxation, as described in Section 6.5. Note that the level set method leads to a local
minimum, which makes it highly susceptible to initialization. To this end, we provide segmen-
tation results with two different initializations - a box centered in the middle of the volume
with side length equal to half of the resolution along the corresponding dimension and a sphere
centered in the middle of the volume with radius 100 voxels. In contrast, the convex relaxation
technique always converges to a global minimum of the underlying energy functional and is
completely independent of initialization. Expectedly, both initialization procedures for the
level set implementation lead to fairly different segmentations. Note that the optimization
scheme is coupled with the process of updating the foreground/background histograms. The
box-shaped initialization produces a quite poor segmentation result. In particular, due to the
weak foreground/background intensity discrimination and the dominance of the flux term,
the generated surface consists of multiple components situated around the vesicle boundary.
The spherical initialization provides a closer capturing of the imaged shape and leads to a
more accurate segmentation result. The elongated structures at the top and the bottom of
the surface may seem surprising at first but not after a more extensive inspection of the input
data set (see the visualization of the cross-sections). And still, some oversmoothing effects
of the resulting boundary can be observed. Hence, the convex relaxation technique proves
essential for the precision of the final segmentation result. Recall that the proposed approach
relies on a global data term computation.



6.6 Experiments 133

1 2 3 4 5 6 7 8 9
0

0.02

0.04

0.06

0.08

0.1

0.12

slice number

de
vi

at
io

n 
fr

om
 g

ro
un

d 
tr

ut
h

 

 model−based approach
proposed approach (LS box)
proposed approach (LS sphere)
proposed approach (convex orig.)
proposed approach (convex interp.)

Fig. 6.12: Quantitative evaluation of the segmentation results in Fig. 6.11. The accuracy of the computed
segmentations is measured in terms of their deviation from a manually obtained ground truth for a couple
of representative slices. Note that the proposed model optimized with level sets exhibits a quite jumpy
behavior due to the local minimization scheme in combination with the globally estimated data terms. The
proposed approach based on convex optimization proves superior to all other methods.

The discussed conclusions are additionally confirmed by a quantitative evaluation of the above
segmentation results, shown in Fig. 6.12. To this end, a few equidistantly spaced slices out of
the volume interior have been manually segmented by an expert and used as a ground truth.
Note that the slices close to the boundary are quite unclear and a ground truth segmentation
is hard to obtain. If ugt : V → {0, 1} denotes an implicit labeling representing this ground
truth surface (being 0 within the interior region and 1 within the exterior) and u : V → {0, 1}
the obtained 3D segmentation, we measure the misalignment between them as

ε =

∫
V
|ugt(x)− u(x)| dx∫

V
ugt(x) dx+

∫
V
u(x) dx

. (6.25)

In particular, we have ε ∈ [0, 1] with ε = 0 if and only if both segmentations are identical and
ε = 1 if u is the empty set or if both labelings are complementary to each other. As evident
from the plot, the proposed model optimized with level sets exhibits a jumpy behavior for
both a box-shaped and a spherical initialization due to the local minimization scheme in
combination with the globally estimated data terms. In contrast, the model-based method
in [149] as well as the proposed approach based on convex relaxation demonstrate a stable
behavior, whereas the latter offers substantially increased accuracy. This clear superiority
over all other methods validates both the derived energy model and the utilized optimization
technique. Note that applying the method to the original volume data without interpolation,
which is not possible with the formulation in [149], entails additional accuracy gains.
In addition to the improved accuracy, the proposed approach is substantially faster than the
method in [149]. For the interpolated data set, the measured computational time was about
an hour for the proposed algorithm as opposed to more than 6 hours for the model-based
one. The relatively high computational costs of [149] are mainly due to the time-consuming
data term updates within an entire vicinity around the current surface estimate as well as
the process of reinitialization of the underlying implicit function, inherent to the level set
framework.
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6.7 Discussion

In this chapter, we extended the range of applicability of convex optimization to the do-
main of 3D segmentation. In particular, we proposed a robust and accurate approach with
applications to vesicle membrane analysis. The method is designed to operate adequately
with noisy data sets with a specific focus on biological applications like vesicle and cell seg-
mentation. Despite this emphasis on the particular application area the approach is general
and can be easily adapted to other segmentation tasks. The key idea is to tackle the prob-
lem as the minimization of an appropriate energy functional integrating various features that
can be extracted from the input volume data like regional statistics, edge identification and
surface orientation. Moreover, the proposed model replaces the traditionally used isotropic
regularizer by an anisotropic one in order to address the non-uniform resolution and therefore
also sampling of the measurements along different spatial directions. We showed how the
resulting energy functional can be optimized globally in a continuous setting by means of
convex relaxation. Experiments on challenging fluorescence imaging data demonstrated that
the proposed approach allows to accurately reconstruct the vesicle membranes despite the
limited discriminative characteristics of intensity distributions and despite blurred and noisy
surface boundaries. Furthermore, the reconstruction results were systematically improved by
incorporating the different energy terms. Experimental results also confirmed the superiority
of the proposed convex relaxation approach over state-of-the-art level set methods as it gives
rise to robust and highly accurate membrane reconstructions, independent of initialization.
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The scientist, by the very nature of his commitment,
creates more and more questions, never fewer.

Gordon Willard Allport (1897-1967)

This thesis explored the potential of convex optimization for solving surface reconstruction
problems in computer vision like multiview 3D reconstruction and 3D segmentation. Through-
out the work, we became acquainted with different energy models, amenable to convex opti-
mization, fusing various cues and thus addressing the tackled problems in manifold ways.
In Chapter 2, an interactive approach for 3D modeling from object outlines was proposed.
The underlying convex formulation allowed to find an optimal 3D shape with respect to
the specified user input in form of a few scribbles marking object and background in only
one of the input images. We built a probabilistic framework taking the entire amount of
available color information to deliver the most probable reconstruction. We saw that the
proposed probabilistic formulation entails considerable robustness to image noise, camera
sensor perturbations and background clutter.
Chapter 3 focused on the multiview stereo problem. We considered three energy models shar-
ing the same convex variational structure. We investigated different strategies for computing
respective data terms and compared them qualitatively and quantitatively. Moreover, two
numerical schemes for solving the arising minimization problem were examined with respect
to runtime, memory requirements and potential for parallel computing.
Chapter 4 tackled the problem of fusing complementary information sources like silhouettes
and multiview stereo. To this end, a transparent formulation was proposed, where stereo
consistency was imposed by constructing a suitable energy model and silhouette alignment –
by means of constraints restricting the domain of feasible shapes. After relaxation, we ended
up with a constrained convex optimization problem. A solution of the original non-convex
problem was derived by appropriate thresholding, which was shown to lie within an energy
gap from the globally optimal one.
Chapter 5 extended the class of functionals amenable to convex optimization by including
anisotropic minimal surfaces and minimal ratios. We demonstrated the capability of the
anisotropic minimal surface model to incorporate given surface normal information while
retaining all globality guarantees of isotropic formulations. Further on, we focused on two
particularly interesting properties of the minimal ratio model – absence of a shrinking bias
and scale invariance. We saw that both models are amenable to convex optimization. While
this is straightforward for the anisotropic minimal surface model as it generalizes previously
proposed formulations, the minimal ratio model requires more care. Yet, we showed that its
minimization boils down to solving a sequence of convex optimization problems.
Chapter 6 was devoted to the 3D segmentation problem. Once again, convex optimization
served as a powerful tool in the design of an appropriate energy model meeting all require-
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ments. The proposed formulation integrates a variety of image cues like regional intensity
statistics, edge attraction and orientation information. Although the method was developed
with focus on a particular biological application at hand – vesicle membrane reconstruction
from fluorescence imaging – it is general enough to be applied to a multitude of different
segmentation tasks.

7.1 Main Contributions

In the following, we summarize the main contributions of the thesis.

• The first convex formulation in the field of multiview 3D reconstruction was proposed
[73]. Thereby, along with the potential of convex optimization for image-based modeling,
the advantages of the technique over discrete counterparts like graph cuts were explored.
This opened up new ranges for further investigations in the domain [144, 68, 72, 143]
and beyond [103, 120, 102, 97, 99, 25].

• A probabilistic framework for fusing different observations within a multiview setting
was developed [66]. While similar formulations have been investigated in the context
of background subtraction [38], the proposed approach stands out by modeling inten-
sity/color statistics. It served as a basis for an interactive method which allows to obtain
an optimal 3D shape for the specified user input [24].

• It was shown that multiview stereo can be posed as a convex problem [73, 71, 72]. This
observation resulted in the design of robust and accurate reconstruction approaches
which do not require any initialization and do not depend on the geometrical structure
or topology of the imaged object.

• A mathematically elegant method for fusing silhouette and stereo information was pro-
posed [68]. In contrast to alternative formulations (e. g. [116]), the presented scheme
avoids premature hard decisions about voxel occupancy, which leads to increased robust-
ness and accuracy. The uniqueness of the proposed model consists also in the guarantee
that the computed solution lies within an energetic gap from the globally optimal one.
The developed framework inspired other researchers to generalize it to further applica-
tion domains [82, 80].

• The class of cost functionals amenable to convex optimization was extended to include
minimal ratio models [69]. Along with the global optimizability in a continuous setting
of the proposed minimal ratio model, some useful properties like absence of a shrinking
bias and scale invariance were explored.

• Convex relaxation techniques were generalized to anisotropic metrics [74]. While similar
formulations were investigated for other related applications [143, 97], the proposed
anisotropic minimal surface model was developed independently.
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7.3 Future Work

As convex optimization proved itself as a useful and powerful tool for solving a variety of
surface reconstruction problems, this raises the question about further potential application
areas. Three research directions are particularly appealing – shape from shading/photometric
stereo, large-scale multiview reconstruction and dense camera calibration.
In Chapter 5, we saw that given surface normal information can easily be integrated in a
convex optimization process. This observation opens up new ranges for applications like
shape from shading [53] and photometric stereo [139]. As the photometric stereo problem is
generally well-posed and directly incorporates an estimated normal field, the application of the
proposed anisotropic minimal surface model is straightforward. Yet, the shape-from-shading
problem is mathematically ill-posed, since the normal at each surface point is not uniquely
determined, which entails more difficulties.
Recently, the problem of reconstructing large-scale urban scenes from a collection of images
or video data has attracted considerable attention in the community [104, 42, 39]. Severe
illumination variations, occlusions and imprecise camera calibration present great challenges
and require a robust 3D modeling procedure. As convex optimization manifested itself as a
valuable and useful tool to address difficulties of this type, its generalization to large-scale
image-based modeling seems quite promising.
This work focused on image-based dense surface reconstruction. In the context of 3D modeling
from multiple views, this presumes given camera calibration. Thus, building a unified frame-
work for reconstruction and calibration is of contemporary interest. While such formulations
already exist [127, 6], their convexification still remains an open challenge.



A Visibility Estimation via Implicit
Ray Tracing

In Section 1 and 3, we saw that visibility estimation is essential in multiview stereo. Here, we
give more details on the utilized technique for visibility reasoning. It is a variant of a method
proposed in [126].
Given a set of n fully calibrated cameras and a current surface estimate in an implicit form
ũ : Ṽ → {0, 1} within a discrete volume Ṽ , where 1 denotes interior and 0 exterior, the goal is
to compute a global visibility map V is : Ṽ → P({1, . . . , n}). Thereby, for a grid point x̃ ∈ Ṽ ,
V is(x̃) should give the indices of all cameras that have a direct visual contact to x̃.1

For simplicity, we start with the visibility estimation for one camera, say i, before generalizing
the computations to the multiview setting. To this end, we define a visibility function ψi :
Ṽ → {0, 1} encoding this information. Let Oi ∈ R3 signify the known camera position.
A basic observation is that the visibility along each ray emanating from the vantage point
satisfies a causality condition: if a point is occluded, then all other points farther away from
the vantage point on the same ray are also occluded. Thus, we can set

ψi(x̃) = max
ξ∈L(Oi,x̃)

ũ(ξ), (A.1)

where L(Oi, x̃) is the line segment connecting Oi and x̃. According to the above definition, if
ψi(x̃) = 1, then x̃ is occluded. The key idea is to approximate ψi by a function ψh

i : V → [0, 1],
where V denotes the continuous volume encompassing the scene and thus Ṽ ⊂ V , defined as
follows

ψh
i (x̃) = max

(
ψh

i (x̃′), ũ(x̃)
)
. (A.2)

Thereby, x̃′ ∈ V is some point immediately before x̃ in the ray direction. As long as the values
of ψh

i (x̃′) are computed ahead of the estimation of ψh
i (x̃), the above procedure will be valid.

In particular, for a grid point x̃ an upwind neighbor x̃′ is obtained by considering the cube
for which x̃ poses one of the corners and the other corners are neighboring grid points of
x̃ on Ṽ and which is crossed by the viewing ray passing through x̃. The ray determines a
unique intersection point with one of the sides of the cube. Now, this point is taken as x̃′.
Note that usually x̃′ does not lie on the grid Ṽ and the value ψh

i (x̃′) is computed by trilinear
interpolation. As a consequence, ψh

i takes on not only binary values, but values within the
entire unit interval [0, 1]. A visibility decision could be taken by thresholding at 0.5.
One additional issue requires specification – determining a processing order of the volume grid
points which allows for applying (A.2). A valid traversal scheme is described in the following.
In [126], it is referred to as a star-shaped updating sequence. Starting from the vantage point
Oi, the grid points close to it are processed first before moving to more distant ones. Note that
the camera is usually placed outside the volume V as the volume is aligned with the imaged

1. Note that the terms “voxel” and “grid point” can be used as synonyms. Yet, the interpretation of discrete
volume units as grid points is here more convenient.
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classical visibility modified visibility

Fig. A.1: Classical vs. modified visibility. While classical visibility estimation procedures classify points
within the interior of an object as occluded, the proposed modified scheme extends the visibility region
(marked in gray) inside the surface and allows to apply appropriate regional terms.

scene to achieve optimal spatial resolution. In such cases, we take the projection of the vantage
point onto the volume O′

i = ΠV (Oi) as a starting point for the traversal algorithm. First, we
compute the values of ψh

i at the eight neighboring grid points and subsequently within the
strips along the three coordinate axes. In general, these strips separate the discretized volume
Ṽ into eight octants2 which are processed in series slice-wise. See [126] for more details on
this sweeping procedure.
So far, we have considered classical visibility estimation for one given camera i. There is
one issue that requires more attention. Many of the approaches, proposed in this thesis,
involve computing volumetric data terms specifying surface interior and exterior region. Yet,
according to the traditional visibility reasoning, all points lying inside the current surface
estimate are classified as occluded. Hence, we have to devise a strategy to propagate visibility
information inside the surface in order to make the proposed methods applicable. To this end,
we modify the definition of ψh

i to

ψh
i (x̃) =


ψh

i (x̃′), if 〈∇ũ(x̃), x̃−Oi〉 ≥ 0

max
(
ψh

i (x̃′), ũ(x̃)
)
, otherwise.

(A.3)

Note that ∇ũ(x̃) reflects the local surface normal. Hence, the above formulation allows to
propagate visibility information directly if the surface is oriented towards the vantage point.
The intuition behind is the fact that accurate regional terms can be computed only for grid
points with the given property. See Fig. A.1 for a comparison between the classical visibility
estimation and the proposed modified scheme.
Finally, after obtaining the visibility functions for all cameras ψh

1 , . . . , ψ
h
n, the global visibility

map V is is derived from the relation

i ∈ V is(x̃) ⇐⇒ ψh
i (x̃) ≤ 0.5. (A.4)

In order to recognize the efficiency of the proposed scheme for visibility estimation, we observe
that its computational time is in O(n · N), where n denotes the number of cameras and N
– the number of volume grid points. This is genuinely fast as opposed to a naive procedure
which treats all viewing rays separately and has a runtime in O(n ·N4/3). Note that in typical
application scenarios N is in the order of multiple million.

2. Note that the number of octants could vary between one and eight. In particular, we have eight octants
if the vantage point lies within the volume and one octant if the vantage point projects onto one of the
corners of the volume.



B Total Variation Norm

Throughout this thesis, we used the total variation norm as a regularization scheme in prac-
tically all derived energy models. Here, we study some of its most prominent properties. A
more detailed description can be found in [101].
For a function u : V ⊂ R3 → [0, 1], u ∈ BV (V ), the total variation norm (TV norm) is defined
as

TV (u) =
∫

V
||∇u|| dx, (B.1)

where ||.|| denotes an arbitrary norm. In the sequel, we consider the Euclidean norm |.| for
simplicity.
While the definition in (B.1) assumes a certain degree of smoothness of u, i. e. functions with
integrable first order derivatives, there exists a more general formulation which is defined for
any real-valued function u ∈ L1(V ), i. e. for any absolutely integrable function

TV (u) = max
|p|≤1

∫
V
u · div(p) dx, (B.2)

where p ∈ R3. Obviously, this definition of the TV norm is also valid for discontinuous
functions as long as they are absolutely integrable.
The TV norm has an interesting geometrical property. It can be decomposed by means of the
level sets of u. The relation is expressed by the coarea formula∫

V
|∇u| dx =

∫ 1

0
Per ({x | u(x) > γ}) dγ, (B.3)

where one integrates the perimeter of the set {x | u(x) > γ} for all values of γ. The coarea
formula essentially states that the TV norm can be decomposed into a sum of the length of
all level sets of u. This property was already used in the proof of Theorem 6.
Finally, we focus on maybe the most important characteristic of the TV norm – it is discon-
tinuity preserving. To see this, consider an example in 1D depicted in Fig. B.1.1 All three
functions f1, f2, f3 : [0, 1] → [0, 1] satisfy the boundary conditions f(0) = 0 and f(1) = 1.
Moreover, all three functions are monotonically increasing in the given interval. Despite the
different degree of smoothness, it can be verified that all functions exhibit the same value of
the total variation norm which is 1. Note that for discontinuous functions an estimate can be
calculated by subsampling the respective signal. We can conclude that the TV norm is not
sensitive to discontinuities. This property is of paramount practical importance as it allows
for highly detailed reconstructions while maintaining a high level of regularization.

1. The example has been taken from [101].

141



142 Total Variation Norm

Fig. B.1: Preservation of discontinuities. Despite the different degree of smoothness, all three functions
exhibit the same value of the total variation norm. The example has been taken from [101].



C Notations

dx volume element (3D)
dx̃ discretized volume element (voxel)
ds surface element (2D)
dz image element (2D)
dr ray element (1D)
V ⊂ R3 volume

Ṽ ⊂ V discretized volume
Ωi ⊂ Z2 image domain of camera i
Ii : Ωi → R3 i-th color image
πi : V → Ωi projection mapping of camera i
Sili ⊂ Ωi object silhouette in image i
n ∈ N number of images
N ∈ N number of voxels
V is : V → P({1, . . . , n}) visibility map
S : Θ ⊂ R2 → V surface estimate
NS : Θ → S2 outward surface normal field of S
int(S) ⊂ V interior of S
ext(S) ⊂ V exterior of S
˜int(S) ⊂ Ṽ discretized interior of S
˜ext(S) ⊂ Ṽ discretized exterior of S
u : V → {0, 1} implicit labeling function
u : V → [0, 1] relaxed implicit labeling function
I : V → [0, 1] volumetric 3D data to be segmented
||.|| general metric
|.| Euclidean metric

|.|D metric induced by D, i. e. |v|D =
√
vTDv
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