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Figure 1: The proposed framework allows to obtain robust surface segmentations in a principled way. Here, an initial ensemble
of 50 segmentations (we show only 5 for visualization purposes) is generated via a clustering process on the Global Point
Signature embedding of the shape. Given this ensemble, the corresponding consensus is defined as the unknown segmentation
that is as close as possible to all the others. Note that the number of regions in the ensemble and in the final consensus
segmentation are not necessarily the same. The detected regions are stable across non-rigid deformations of the shape.

Abstract
We consider the problem of stable region detection and segmentation of deformable shapes. We pursue this goal
by determining a consensus segmentation from a heterogeneous ensemble of putative segmentations, which are
generated by a clustering process on an intrinsic embedding of the shape. The intuition is that the consensus
segmentation, which relies on aggregate statistics gathered from the segmentations in the ensemble, can reveal
components in the shape that are more stable to deformations than the single baseline segmentations. Compared
to the existing approaches, our solution exhibits higher robustness and repeatability throughout a wide spectrum
of non-rigid transformations. It is computationally efficient, naturally extendible to point clouds, and remains
semantically stable even across different object classes. A quantitative evaluation on standard datasets confirms
the potentiality of our method as a valid tool for deformable shape analysis.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Shape Analysis

1. Introduction

Detecting and matching features among three-dimensional
shapes is at the heart of a broad range of visual tasks
in computer vision and graphics, including object recogni-
tion, surface reconstruction, and pose transfer to name just
a few. Inspired by their increasing success in the 2D do-
main [MTS∗05], in recent years the interest has shifted to-
wards the definition of region (or component) detectors as
robust alternatives to the widespread point-based methods.

Due to the increased robustness with respect to their point-
wise counterparts, region-based features are being success-
fully employed for problems of shape matching [OBCS∗12,
PBB∗13] and shape retrieval [LBB12]. In this context, of
particular relevance is the robustness or invariance of the de-
tector under non-rigid transformations of the surface being
analysed. Previous attempts to solve the problem with the
language of diffusion geometry had alternating success due
to their limited resilience to strong deformations.
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In this work, we present a novel perspective on this prob-
lem. Our approach draws inspiration from the family of so-
called ensemble methods, originating in the context of data
clustering. Before providing a summary of our contribution
in Sect. 1.2, we present hereafter a brief review of the most
relevant works in the literature.

1.1. Related work

Perhaps the most closely related work to ours is the approach
taken by Golovinskiy and Funkhouser in [GF08]. Their main
idea is to generate a large set of randomized cuts on the mesh
structure of the shape, with concavity weights assigned to
each edge based on their exterior dihedral angles. The gen-
erated cuts are then scored according to a measure of over-
lap among them, so as to produce a global partition func-
tion for the mesh. The partition function provides a mea-
sure of where natural part boundaries occur in the shape.
In practice, strong cuts mainly appear at the boundaries be-
tween large, nearly-convex parts of the surface. With this ap-
proach, segmentations are only obtained as a by-product of
consistent cuts via a hierarchical extension to the main algo-
rithm [GF08]. The authors reported overall average results,
in line with other rigid segmentation approaches.

More recently, Litman et al. [LBB11] explicitly formu-
lated region detection as a problem of seeking maximally
stable components on deformable 3D models, according to a
particular stability criterion based on surface area. Their ap-
proach is based on the definition of a component tree over the
mesh graph of the shape, which is then traversed efficiently
by an optimization procedure. Differently from [GF08], the
framework of [LBB11] accounts for both vertex- and edge-
weighted representations of the mesh graph. Most impor-
tantly, the weighting functions employed by Litman et al.
capture the intrinsic properties of the underlying manifold,
being constructed from diffusion geometric quantities. This
choice makes the approach invariant under non-rigid trans-
formations of the shape, and gives successful results on stan-
dard benchmarks. The approach was further extended to deal
with shapes represented as volumes [LBB12], comparing
favourably with the mesh-based counterpart.

Inspired by the cognitive theory of saliency of visual
parts, Sipiran and Bustos [SB13] introduced a region detec-
tor based on the idea of shape ”protrusions”. The method
differs from the other approaches in that it provides an in-
complete decomposition of the shape, i.e. the union of the
detected regions does not cover the whole surface. Visu-
ally, these regions correspond to the rigid parts of the shape
(e.g. the hands, feet and head of a human shape). Other no-
table approaches to deformable shape segmentation include
the persistence-based technique of Skraba et al. [SOCG10].
The method is based on the ideas of topological persis-
tence, according to which the ”relevant” (i.e. stable) seg-
ments of a shape correspond to the basins of attraction of
some function f defined over it. First, connected compo-
nents on the surface are associated with local maxima of f ;

a merging procedure then traverses the hierarchy of compo-
nents to produce a final stable segmentation of the shape.
The method is provably stable under isometric transforma-
tions, but its performance rapidly decreases in presence of
topological noise. Heat walk [BPVR11] is based on similar
principles, but employs a diffusion geometric edge weight-
ing akin to [LBB11]. Other methods based on ideas from dif-
fusion geometry [Reu10, GBAL09] successfully tackle the
nearly-isometric case, but are generally sensitive to shape
deformations that are far from being isometric. Aubry et
al. [ASC11] formulated the segmentation problem as one
of Gaussian mixture clustering in a proper descriptor space.
The method shows promising results, but relies on the as-
sumption of having several poses of the same shape avail-
able, in order to produce stable regions on previously un-
seen transformations. To our knowledge, the methods of Lit-
man et al. [LBB11, LBB12] provide the best results overall,
on a broad range of shape transformations.

1.2. Contributions

In this paper, we develop the idea of detecting robust regions
in three-dimensional shapes by looking for a consensus
among a set (a.k.a. ensemble) of candidate segmentations
of the shape itself. Our motivation is that consensus segmen-
tations tend to reveal more stable region structures than the
individual putative segmentations forming the ensemble. In-
deed, this property of ensemble methods is common knowl-
edge within the data clustering community [SG02, FJ05].
Works like [AG12] successfully exploited these ideas for
image segmentation, although with the aim to improve the
segmentation quality, rather than detecting robust segments.
To our knowledge, this is the first work trying to detect re-
peatable regions in shapes as the outcome of an ensemble
clustering process. First, we create an ensemble of isometry-
invariant segmentations by running multiple times, and with
different parametrizations, a simple clustering algorithm (i.e.
k-means) in an appropriate space (Sect. 2). The ensemble
is then fed to a consensus clustering algorithm specifically
designed for the task (Sect. 3). Compared to existing ap-
proaches, our method has the following key advantages:

• The provided framework is general, in that it does not fix
any specific representation of the shape. The algorithm re-
volves around the general notion of shape ”node”, which
can then be instantiated to the specific problem at hand
(e.g. mesh faces when working with meshes).

• The algorithm is scalable. We propose an effective way
to rephrase the node-based formulation in terms of more
abstract objects that we call ”base segments”. Further, we
provide theoretical results relating the two formulations.

• Quantitative evaluations on two standard datasets confirm
the improved stability of our approach in the presence of
strong non-rigid transformations (Sect. 4).

• Finally, we show that the computational cost of finding a
repeatable segmentation is low, and that this can be done
with limited data (i.e. with fairly small ensembles).
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2. Isometry-invariant segmentation of a shape

In this section we introduce the key concepts and results
that set the stage for consensus segmentation as a robust tool
for deformable shape analysis. These definitions will be the
starting point for our method in Sect. 3.

2.1. Diffusion geometry

We model shapes as compact connected Riemannian mani-
foldsM endowed with the standard measure µ induced by
the volume form. The space (M,µ) features the symmet-
ric Laplace-Beltrami operator (or Laplacian) ∆M acting on
smooth functions overM. We call function φ an eigenfunc-
tion with eigenvalue λ if ∆Mφ = λφ. The set of all eigen-
values {λ1 < λ2 < .. .} of ∆M is an infinite discrete sub-
set of R+ with λk →∞ as k→∞ [Ber03]. Assuming the
manifoldM has no boundary, we have an extra eigenvalue
λ0 = 0 with multiplicity 1 (by connectedness), whose cor-
responding eigenfunction is constant. Consider the diffusion
process onM described by the heat equation

∆Mu =
∂

∂t
u , (1)

with the initial condition u(t = 0, p) describing the initial
heat distribution at p ∈M. Any Riemannian manifold M
possesses a unique, smooth heat kernel ht(p,q) which is the
fundamental solution to the heat equation. For compactM,
the heat kernel can be expressed as the convergent series

ht(p,q) =
∞
∑
k=0

e−λkt
φk(p)φk(q) . (2)

The heat kernel can be given an interpretation as the transi-
tion probability density of a random walk of length t from
point p to point q on M. Following from the invariance
of ∆M under isometric transformations of M, the kernel
ht(p,q) is an intrinsic quantity of the shape.

2.2. Global Point Signatures

Given a point p ∈M, the Global Point Signature
(GPS) [Rus07] at p is defined as the infinite-dimensional
vector

g(p) =

(
1√
λ1

φ1(p),
1√
λ2

φ2(p),
1√
λ3

φ3(p), . . .

)
,

which corresponds to the vector of (rescaled) coefficients of
an indicator function around p ∈M, when represented in
the basis {φk}∞k=1. The GPS shares with the heat kernel the
property of being an intrinsic quantity, i.e. two isometric sur-
faces have the same image under g (up to orthogonal trans-
formations of the φk).

The above definitions give rise to a meaningful notion
of inner product among GPS signatures, which we will
now elucidate. Consider the Green’s function of a general
weighted manifold (M,µ), which is defined by

G(p,q) =
∫ ∞

0
ht(p,q)dt . (3)

From the relation above, it follows that estimates of the
Green’s function can be obtained from estimates of the heat
kernel. We get the closed form expression

G(p,q) =
∞
∑
k=1

1
λk

φk(p)φk(q) , (4)

The expression above is sometimes referred to as the
commute-time kernel forM. In analogy with the heat kernel,
it can be interpreted as the transition probability density of
a random walk of any length overM. In addition, the value
of G(p,q) is now a scale-invariant quantity, i.e. it does not
depend on the global scale of the shape. Note that, due to the
scale-space properties of the basis {φk} [Ber03], in practice
one can truncate the series (4) to the first k̄ terms (a typi-
cal value is k̄ = 100). The key observation in this section is
that Eq. (4) corresponds to the dot product of two (infinite-
dimensional) GPS signatures at points p,q ∈M [Rus07].
This brings us to the following simple remark:

Remark 1 The GPS embedding of a shapeM is endowed
with the inner product defined by 〈g(p),g(q)〉= G(p,q).

Recall that, for any compact Riemannian manifold,
the Green’s function G(p,q) is such that u(p) =∫
MG(p,q)η(q)dq solves the Poisson equation ∆u = η,

where η is a prescribed function on the manifold. Pois-
son’s equation arises in numerous application areas, includ-
ing mesh editing [YZX∗04] and surface reconstruction just
to name a few. Common to these methods is the requirement
to satisfy linear modelling constraints on the surface, while
preserving differential properties of the original geometry in
the least squares sense. Intuitively, G(p,q) then measures the
degree of ”coupling” of two points p and q on a shape M
undergoing geometric deformations.

2.3. An ensemble of segmentations

The intrinsic properties of GPS make it a natural candidate to
produce robust segmentations of a given shape. In this con-
text, the notion of robustness corresponds to the stability (or
repeatability) of the segmentation across non-rigid deforma-
tions of the manifold.

A straightforward approach towards isometry-invariant
segmentation is to run a clustering process on the GPS em-
bedding ofM. Consider the partition function C : g(p) 7→ i
with p ∈ M, assigning to each point in Im(g) its ”cluster
identity” i ∈ {1, . . . ,k}. The goal of clustering is to find a
good partition based on the sample g(p1), . . . ,g(pn) of n
points, distributed independently according to an unknown
probability measure. The quality of C can be quantified via
the scatter measure

w(C) =
1
n

k

∑
`=1

∑
C(g(pi))=`

‖g(pi)− c`‖2da(pi) , (5)

where da(pi) denotes the discrete area element of point
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pi ∈M, c` is the mean of the `th cluster based on the as-
signment C, and ‖ · ‖ denotes the standard Euclidean metric
in R∞ as induced by the inner product (4).

Definition 1 A segmentation of M is a minimizer of the
within-point scatter (5).

The k-means clustering algorithm is an alternating pro-
cedure for minimizing (5). It starts from an initial seeding
{c`}k

`=1 of cluster centres, followed by the assignment of
each g(pi) to the nearest centre c`. Centres are then recom-
puted, and the procedure is repeated. The algorithm can get
trapped in local minima, and its stability is characterized
by the uniqueness of the minimum of the objective function
with respect to the true (unknown) distribution. Indeed, there
is no guarantee of existence of a unique minimizer for (5),
and in fact the number of minimizers could be infinite.

Example. We show an example of this procedure in Fig. 1
(middle). We segmented a cat shape starting from different
initial seeds, chosen randomly. The instability of the clus-
tering process is revealed by the different segments we get
after each minimization. Note, however, the presence of con-
sistent regions across the different segmentations (notice, for
instance, the raised leg).

One crucial criterion in evaluating the quality of a clus-
tering scheme is its consistency under transformations of the
data set. Even assuming an optimal seeding scheme is avail-
able, significant deviations from isometry may still affect the
quality and stability of this direct approach across different
deformations of the shape (recall that our samples are drawn
from mappings of the shape points under g, which is an
isometry invariant). Our key insight is that regions that are
consistent across different segmentations of the shape (e.g.
from different seeds) remain consistent under non-isometric
deformations of the manifold. In the next section we show
how to formalize this intuition in order to elicit the stable
components of a given shape. We conclude this section with
the following useful observation:

Remark 2 Every baseline segmentation of M is scale-
invariant. In other words, starting from a fixed seed {c`}k

`=1
with c` ∈M, it holds C(g(M)) =C(g(αM)) for α ∈ R.

The remark is a direct consequence of Eq. (4) and Def. 1.

3. Consensus segmentation of a shape

In this section we focus on the problem of deriving a con-
sensus segmentation from a heterogeneous ensemble of seg-
mentations of a shape. Our intuition is that the consensus
segmentation, which relies on aggregate statistics gathered
from the segmentations in the ensemble, can reveal segments
(a.k.a. components) in the shape that are more stable to de-
formations than the single baseline segmentations. Formally,
our approach can be categorized as an unsupervised learning
method; the theory behind it is inspired by recent work on
consensus clustering [LRBR∗13b, LRBR∗13a].

3.1. Preliminaries

A shape N = {qi}ni=1 consists of a set of n nodes, which
can be regarded as faces (e.g. triangles) in case of meshes or
points in case of point clouds. An ensemble of m segmen-
tations over a given shape N can be represented as a ma-
trix E ∈ [n]m×n, where we denote the set {1, . . . ,n} with [n]
for the sake of convenience. Each entry of E denoted by Eui
represents the index of the segment in the uth segmentation
that contains shape node qi ∈ N . Rows of E are referred to
as segmentations and the uth row is denoted by Eu∗ ∈ [n]n,
whereas columns of E are referred to as signatures and the
ith signature is denoted by E∗i ∈ [n]m.

Definition 2 Given an ensemble of segmentations E and a
maximum number of segments 0 < k ≤ n, a consensus seg-
mentation is a segmentation x∗ ∈ [k]n that is as close as pos-
sible to all segmentations in E.

The consensus segmentation can be regarded as the
Fréchet sample mean with samples in E defined with respect
to the semi-metric space ([n]n,d), where [n]n is the set of
segmentations and d : [n]n× [n]n→ R+ is a semi-metric:

x∗ ∈ arg min
x∈[k]n

m

∑
u=1

d2 (Eu∗,x) . (6)

Since two segmentations are the same under a permutation
of the segments’ label, we have that d(x,y) = 0 holds also
for some y 6= x. This is the reason why we assume d to be a
semi-metric.

Measuring the distance between segmentations is in gen-
eral troublesome, for segmentations might have different
number of segments and the correspondences between seg-
ments are not known. An elegant way of sidestepping
these problems consists in defining the distance in terms of
second-order quantities. Specifically, in this work we define
d in a way to penalize when two shape nodes are not con-
sistently segmented in the two segmentations, i.e. when they
belong to the same segment in one segmentation but to dif-
ferent ones in the other. Specifically, we adopt

d2(x,z) = ∑
i, j∈[n]

wi j(1xi=x j −1zi=z j )
2 , (7)

where 1P is an indicator function returning 1 if property P is
true and 0 otherwise. The wi j’s are non-negative weights that
allow to finely control the incidence of inconsistent segment
assignments for specific pairs of shape nodes. They are set
to a non-zero constant if no prior preferences are available.
In the case that triangles are used as shape nodes, the weight
of a pair of nodes can be set, e.g. to the product of the areas
of the respective triangles.

Remark 3 The consensus segmentation depends on a pa-
rameter k, which should be regarded as an upper bound to
the actual number of segments. In fact, the number of distinct
segment indices appearing in the solution to (6) might be less
than k. Similarly to other approaches [SOCG10,LBB11], de-
termining the optimal number of components to be extracted
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⋂

Figure 2: Example of base segments for the cat shape, ob-
tained from the intersection of 50 segmentations in the en-
semble (only 5 are shown for visualization purposes).

is not our focus in this work, but rather we show that stable
components can be obtained with our approach under differ-
ent choices of k.

3.2. Consensus with base segments

The distance measure (7) has an inherent quadratic complex-
ity, which prevents its direct application to large shapes. In
the context of data clustering, to overcome this scalability
issue, [LRBR∗13b,LRBR∗13a] have proposed to artificially
sparsify the weights wi j’s, by randomly setting most of them
to zero. By doing so, finding the consensus solution to (6)
becomes scalable at the price of optimizing a lower bound of
the original objective. Nevertheless, experiments conducted
in the aforementioned works show that the quality of the so-
lution is substantially preserved.

In this work, we pursue a different idea to overcome the
scalability issue related to the computation of the consensus
segmentation in (6). Our solution consists in reducing the
number of elements to be segmented, yet preserving a princi-
pled relation to the original formulation. Before moving into
details, we give some more definitions. Given a segmenta-
tion ensemble E, consider the following equivalence relation
Ξ defined on the set [n] of indices to shape nodes, which con-
siders two nodes equivalent if they share the same signature:
Ξ = {(i, j) ∈ [n]2 : E∗i = E∗ j}.

Definition 3 Let B = [n]/Ξ = {Bh}h∈[n̂] be the quotient set
of [n], having n̂ equivalence classes. A base segment is an
equivalence class in B.

Intuitively, B represents the intersection of all segmenta-
tions in the ensemble, as depicted in Fig. 2.

Remark 4 The number of base segments is in general con-
siderably lower than the number of nodes in the shape and,
by construction, they preserve the segment co-occurrence
statistics of the shape nodes.

We will consider the base segments as the atomic ele-
ments to be segmented in the consensus segmentation, in-
stead of the shape nodes. First, we derive from E a new seg-
mentation ensemble F ∈ [n]m×n̂ involving base segments as
follows: for all u ∈ [m] and h ∈ [n̂], we select an arbitrary
element i ∈ Bh and set Fuh = Eui. Note that the selection of i
here has no importance, since Eui is constant by construction
for all i ∈ Bh. Then, we replace the segmentation variable

x ∈ [k]n involving shape nodes with a segmentation variable
y ∈ [k]n̂ involving base segments. Finally, we obtain the new
formulation of the consensus segmentation in terms of base
segments as

y∗ ∈ arg min
y∈[k]n̂

∑
u∈[m]

d̂2(Fu∗,y) , (8)

where d̂ : [n̂]n̂× [n̂]n̂→ R+ is defined as

d̂2(y,z) = ∑
h,`∈[n̂]

ŵh` (1yh=y` −1zh=z`)
2 ,

and ŵh` = ∑i∈Bh ∑ j∈B`
wi j.

The following theorem establishes some important rela-
tions between (8) and (6). It shows that the optimal objective
value of (8) is an upper bound to the one of (6) and provides
a sufficient condition for the bound to be tight.

Theorem 1 Let y∗ ∈ [k]n̂ be a global solution to (8) and let
x∗ ∈ [k]n be a global solution to (6). Then

∑
u∈[m]

d2(Eu∗,x∗)≤ ∑
u∈[m]

d̂2(Fu∗,y∗) , (9)

with equality if there exists ωh` such that ωh` = wi j for all
h, ` ∈ [n̂], i ∈ Bh, j ∈ B`.

Proof See supplementary material.

Note that, due in part to the presence of intrinsic sym-
metries in the shapes, the segments partaking in the final
consensus are not necessarily connected (for example, the
two legs of the cat shape may end up in the same segment).
For this reason, we split the segments a posteriori into max-
imal connected components. This operation can be carried
out very efficiently in linear time.

3.3. Complexity issues

By making the shift to base segments, we render the com-
putational complexity of the consensus segmentation com-
putation independent from the number of shape nodes, but
dependent on the size of the ensemble and the segmenta-
tions therein. Clearly, the ensemble construction does still
depend on the actual shape size, but one can adopt scal-
able, fast shape segmentation algorithms (e.g. k-means). As
a consequence, our method can become inefficient if the en-
semble comprises several thousands of base segments. How-
ever, this is unlikely to happen in general as the amount of
data required to produce stable segmentations is very lim-
ited in practice (see Sect. 4.1). By exploiting the base seg-
ments, we are able to keep the shapes in full resolution,
without the need for downsampling strategies as adopted in,
e.g. [LBB11, LBB12, GF08].

Remark 5 In the case that the number of base segments is
too large, one can still resort to an additional sampling strat-
egy geared towards sparsifying the weights ŵh`, similarly to
what done in [LRBR∗13b, LRBR∗13a]. In Sect. 4.3 (super-
segmentation) we show a practical example of this sampling
approach.
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3.4. Algorithmic issues

The optimization problem in (8) can be written in terms of
the following, equivalent matrix-factorization problem (see
Thm. 2 in the supplementary material):

Y
∗ ∈ arg min

Y∈S
‖C−Y

>
Y‖2

M , (10)

where Y is taken from the set S of left-stochastic, bi-
nary k× n̂ matrices, and ‖A‖M =

√
∑h` Mh`A

2
h` denotes the

weighted Frobenius matrix norm with weight matrix M. The
weight matrix has entries Mh` = ŵh`, whereas C is a n̂× n̂
matrix with entries

Ch` =
1
m ∑

u∈[m]

1Fuh=Fu` . (11)

This matrix, which is known as co-association matrix in
the consensus clustering literature, summarizes the co-
occurrence statistics of the base segments within the ensem-
ble. In other words, Ch` holds the fraction of segmentations
in the ensemble, where the two base segments h and ` belong
both to the same segment.

The feasible sets of (8) and (10) are isomorphic, as the
left-stochastic binary matrices in S are an alternative repre-
sentation for the segmentations in [k]n̂. Indeed, any segmen-
tation x ∈ [k]n̂ is identified by a matrix Y ∈ S with compo-
nents Ykh = 1k=xh , while for any Y we can construct a seg-
mentation x ∈ [k]n̂ such that xh = arg maxk Ykh. In Thm. 2 of
the supplementary material we show that the two optimiza-
tion problems are actually equivalent.

To optimize (10), we have implemented the approach
proposed in [LRBR∗13b, LRBR∗13a], properly adapted to
cope also with weight matrices having non-zero diagonal.
In fact, the solution proposed in the aforementioned works
assumes for technical reasons a weight matrix with null di-
agonal. The optimization procedure works on a relaxation
of (10), where the binary constraints are replaced with non-
negativity constraints, and finds in general a local solu-
tion to (10). The problem is indeed non-convex and find-
ing the global solution is NP-hard. We refer the reader to
[LRBR∗13b, LRBR∗13a] for details about the optimization
algorithm.

4. Experimental results

We performed a wide range of experiments to assess the
validity of our approach. The Laplace-Beltrami operator
on all shapes was computed using the cotangent weight
scheme [MDSB02]. The first set of experiments, aimed at
investigating detector repeatability and the sensitivity of our
method to different parametrizations, was performed on the
TOSCA dataset [BBK08]. This dataset consists of 9 shape
classes, represented as triangular meshes, undergoing nearly
isometric (i.e. almost inelastic) transformations. Shape sizes
range from approximately 4000 to 50,000 vertices, and

Figure 3: Example of consensus segmentation on different
shape classes. The detected regions remain stable even un-
der inter-class variations. david, centaur and victoria are
from the TOSCA dataset, the kid is from [RRBW∗14].

ground-truth point-to-point correspondences among all the
shapes belonging to the same class are available. For fair
comparisons with [LBB11] we downsampled all meshes
to at most 10,000 vertices. Since all the shapes from the
adopted datasets are represented as triangle meshes, fol-
lowing Sect. 3 we model the associated segmentation prob-
lem directly on the face elements, corresponding to approx-
imately 20,000 nodes per shape after decimation. The GPS
function g is projected onto mesh faces via the linear com-
bination g(t) = 1

3 ∑i g(ti), where t is a mesh triangle and
i ∈ {1,2,3} ranges over its vertices. In Fig. 3 we show seg-
mentations obtained on a subset of the dataset.

Comparisons with the state of the art were performed on
a different dataset, namely the SHREC’10 feature detec-
tion and description benchmark [BBB∗10]. Differently from
the TOSCA dataset, where shapes are only transformed via
near isometries, shapes from the SHREC’10 benchmark un-
dergo nine different types of deformations, namely: isometry
(similar to TOSCA), noise and shotnoise (additive positional
noise on the surface points), holes and microholes (simulat-
ing partiality and occlusions), sampling (mesh simplification
down to 20% of the original points), scale and localscale,
and topology (drastic perturbations of mesh connectivity re-
sulting in large metric distortion). Each transformation ap-
pears in 5 intensity levels on a total of 3 shape classes (man,
dog, horse). Again, all models are decimated and ground-
truth correspondences between shapes belonging to the same
class are given. See Fig. 6 for examples.

Detector repeatability. Following previous stud-
ies [MTS∗05, LBB11], the main measure we adopt for
the quantitative assessment of our method is the repeata-
bility of the consensus segmentation when seen as a
region-wise feature detector. LetM and N be respectively
a transformed shape and its ”null” counterpart (i.e. in a
canonical pose with no other transformation applied), and
let M(1), . . . ,M(km) and N (1), . . . ,N (kn) denote regions
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Figure 4: Sensitivity of consensus segmentation w.r.t. num-
ber of segmentations (m) in the initial ensemble. Perfor-
mance does not increase significantly for m> 75.

detected in the two shapes. Since the ground-truth cor-
respondence is available, for each region M( j) we can
compute its image inN and obtain Ñ ( j). Given two regions
N (i) andM( j), we can now define their overlap as the area
ratio

O(N (i),M( j)) =
A(N (i)∩Ñ ( j))

A(N (i)∪Ñ ( j))
(12)

=
A(N (i)∩Ñ ( j))

A(N (i))+A(Ñ ( j))−A(N (i)∩Ñ ( j))
,

where A(R) = ∑p∈R da(p) defines the area of regionR.

Given an overlap value o ∈ R, the repeatability at o is de-
fined as the percentage of regions detected in both shapes
at corresponding locations, and having overlap greater than
o. Note that, since all the shapes in both datasets exhibit
global (bilateral) intrinsic symmetries, we can give two dif-
ferent definitions for (12) depending on whether we use the
ground-truth map M( j) 7→ Ñ ( j) or its symmetric counter-
part. Following standard practice [OBCS∗12, LBB11], all
our plots report the best results over the two definitions.

4.1. Sensitivity analysis

In this section we evaluate the robustness of our method un-
der different parametrizations as well as different initial re-
quirements on the data (e.g. lack of a mesh structure). Unless
stated otherwise, all the experiments in this section are per-
formed on the TOSCA dataset.

Size of the ensemble. The first experiment is aimed at evalu-
ating the sensitivity of the consensus segmentation when fed
with ensembles E of different sizes (m). Let ku be the num-
ber of segments in the uth segmentation. We fix ku = 10 seg-
ments for all u = 1, . . . ,m, and at most k = 5 regions in the
final consensus. Since our approach is based on evidence ac-
cumulation, in theory we can expect more accurate results as
the number of provided clusterings increases. Fig. 4 shows
the results of this experiment for various values of m. As
indicative values, with the other parameters fixed, the total
number of base segments (Sect. 3) range from 20 (for m= 3)
to 800 (for m = 75) on average. As we can see from the
plots, the segmentations quickly become stable as we push

the size of the ensemble towards moderately larger values.
Note that with only m= 5 initial segmentations we already
reach very stable results, with around 80% repeatability at
overlap 0.8 (i.e. 80% of the detected regions are exactly re-
producible to within 80% of their area). This result contrasts
with the few previous attempts at evidence-based shape anal-
ysis (e.g. [GF08] required as many as 1200 random cuts in
order to produce sufficiently good partitions).

Initial number of segments. Due to the randomized seed-
ing scheme that we follow in the k-means clustering step, in-
creasing the total number of segments in each initial cluster-
ing is likely to produce noisy segmentations, unless enough
data is provided. One may then ask how much additional ev-
idence is needed in order to produce stable segmentations.
We performed this analysis by computing, for different val-
ues of ku, the number of segmentations required to obtain
80% repeatability at overlap 0.8. We observed a linear de-
pendency among the two quantities, with m = 5 segmenta-
tions required for ku = 10, and around m = 40 for ku = 20.
Note, however, that setting the initial number of segments to
values larger than 10 is rarely needed; we refer to Sect. 4.3
for one possible scenario.

Final number of segments. Given the results from the pre-
vious experiments, one may still wonder about the general
validity of our analysis for different values of k (i.e. the max-
imum number of detected components). In other words, is
there a correlation between the optimal size of the initial
ensemble and k? To answer this question, we performed a
similar experiment to the previous section, substituting ku
by k. We could not observe any evident correlation among
the two quantities, with m ≥ 25 yielding consistently high
repeatability for all k = 3, . . . ,10. Together with the previ-
ous experiments, these results demonstrate the stability of
the consensus estimate under different parametrizations and
limited amount of data.

Representation and sampling. In Fig. 5 we demonstrate
the applicability of our method for the task of stable compo-
nent detection on point clouds. For this experiment we used
two nearly-isometric deformations of a human shape from
the SHREC’10 dataset, and removed the triangulation from
one of the two. The Laplacian on the resulting point cloud
was approximated using the Gaussian-weighted construc-
tion of [BSW09]. Note that our general framework does not
require any modification as we change representation from
triangulated meshes to point clouds (Sect. 3). While spuri-
ous components still appear in very noisy settings (rightmost
point cloud in Fig. 5), the overall segmentation remains quite
stable even under aggressive downsampling. In a separate set
of experiments, we investigated the influence of the number
of eigenfunctions used for constructing the descriptors (Ta-
ble 1). While the dimensionality of the descriptor has a direct
influence on the computational time required by the cluster-
ing step, the segmentation itself is not significantly affected.
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Figure 5: Consensus segmentation on point clouds of in-
creasing sparsity. A shape of 52k vertices (top left) is trans-
formed to a different pose and then, after removing the tri-
angulation, subsampled to 20%, 10%, and 2% of its original
points (left to right). Segmentations remain stable under the
nearly isometric deformation and the change of representa-
tion. Note that the consensus segmentation is performed on
triangles in the first case, whereas it is vertex-based in the
other cases where connectivity information is lost.

Indeed, small values already give a good trade-off between
efficiency and quality of the detector.

15 50 100 200
overlap 0.5 96.47 97.45 97.97 98.44
overlap 0.7 84.96 90.34 92.82 95.31
overlap 0.9 71.35 79.56 83.53 85.23

Table 1: Detector repeatability as a function of descriptor
size (in bold).

4.2. Comparisons

In Fig. 7(a)(b) we compare with the state-of-the-art methods
of Litman et al. [LBB11] and Sipiran and Bustos [SB13].
Note that repeatability of the latter method (red curve) is
only measured on those portions of the mesh that are repeat-
able against non-rigid transformations (by definition of key
component [SB13]), and thus a fair comparison cannot be
made (hence the dashed stroke).

In these experiments we set the size of the ensemble to
m = 50 (number of segmentations) and ku = 10 (number of
regions per segmentation). These values were chosen to give
a good trade-off between efficiency and stability, based on
the previous experiments. We set the final number of seg-
ments to k = 5 for all shape classes, resulting in approxi-
mately the same number of regions as the other methods.
Being based on the analysis we performed on a subset of the
TOSCA dataset (which only covers nearly isometric defor-
mations), the parameters were not optimized for benchmark
performance in any way. The plots in Fig. 7 show quality im-
provement over the other methods across the whole bench-
mark. In particular, our detector yields significantly better
results on the sampling and scale classes, where we get close
to ideal performance (detailed curves from [LBB11, SB13]
are not reproduced here for space reasons). Visual results on

several deformations of a human shape from the SHREC’10
dataset are depicted in Fig. 6.

It is worth mentioning that, differently from Litman et al.,
our method produces a set of non-overlapping regions. Even
though overlapping regions might be more stable in princi-
ple, the conducted experiements demonstrate that our solu-
tion yields superior results over a wide range of data trans-
formations. Nonetheless, the applicability of a consensus-
seeking scheme for overlapping regions might be an inter-
esting direction for future investigations.

4.3. Shape matching

Arguably one of the main applications of stable feature de-
tection on deformable shapes is shape retrieval and match-
ing [BBB∗10]. Recent state-of-the-art approaches base their
success upon the ability to detect repeatable regions on the
given shapes [PBB∗13, OBCS∗12]. The assumption of re-
peatable regions implies that there exists some unknown per-
mutation relating the two sets of detected components; once
a solution to this ”coarse” matching problem is found, a
dense correspondence can be inferred over the entire shapes.

The simplest way to define a region descriptor for a given
componentR⊂M is by computing the area-weighted aver-
age of its q-dimensional pointwise descriptors β :M→Rq,

β̂(R) = ∑
p∈R

β(p)da(p) . (13)

Even though other choices are also possible [LBB11], in this
paper we will consider the previous definition for the sake of
simplicity.

Comparisons. In Fig. 7(c) we evaluate the performance of
our feature detector when employed within the following

Figure 6: Stable regions detected via consensus segmen-
tation on a human shape (SHREC’10 dataset). The fig-
ure shows the detected regions under different transfor-
mations, namely: near-isometry and global rescaling (first
row), holes, noise, localscale, and microholes (second row).
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Figure 7: (a) Repeatability of our method on the SHREC’10 dataset. (b) Comparison with the best results from other methods;
plotted are the average scores over all deformations. The red curve is dashed due to differences in the evaluation (see text). (c)
Matching score attained by our method (all deformations + average) and Litman et al. (average) on the SHREC’10 dataset.

victoria victoria victoria victoria victoria david

cat cat cat cat cat michael

victoria victoria victoria victoria david david

Figure 8: Example of shape retrieval on the TOSCA dataset
using our region detector and SI-HKS as a descriptor. De-
picted in red is the query region, from left to right we show
the 1st, 2nd, 4th, 10th, and 15th closest matches.

matching pipeline. For each region N (i) in the null shape,
we define its first match inM as the region minimizing

M(i∗) = arg min
M( j)⊂M

‖β̂(N (i))− β̂(M( j))‖2 , (14)

i.e. the nearest neighbour of N (i) in descriptor space. Fol-
lowing [LBB11], we then define the matching score at over-
lap o as the ratio

score(o) =
|{O(N (i),M(i∗))≥ o}|

kn
. (15)

An ideal detector-descriptor pair has a constant matching
score of 1. As in [LBB11], in this experiment we use the
scale-invariant heat kernel signature (SI-HKS) [BK10] to
construct the region descriptors according to Eq. (13). Some
examples of region matching for a shape (segment) retrieval
application are depicted in Fig. 8.

Super-segmentation. Similarly to other approaches
[SOCG10, LBB11], our method requires the desired num-

ber of regions to be specified approximately. While in
general it is desirable to determine the optimal number of
segments automatically, this property could be exploited
to oversegment a given shape, one possible application
being the definition of ”coarse” levels in a hierarchical
matching pipeline. We explore this possibility by detecting
k= 50 regions starting from an ensemble of m= 150
segmentations, each composed of ku = 100 segments. With
these parameters, the number of base segments grows
up to 12k (a 40-fold increase in size with respect to the
average scenario). In this situation, following the analysis of
Sect. 3.3, our baseline method can perform poorly. In Fig. 9
we show the solution we obtain after applying the sampling
strategy described in the same section, with sampling rate
equal to 5%. Note that in this experiment we are keeping the
shapes at full resolution (around 55k triangles).

Figure 9: Oversegmenting nearly isometric deformations
of a shape still produces repeatable regions. The smaller
triangle-sized segments are a result of the sampling process
and can be filtered out a posteriori.

4.4. Performance

As described in Sect. 3.3, consensus segmentation is an effi-
cient operation as its performance does not depend directly
on shape size. Here we give an empirical evaluation of the
computational times required by our algorithm. The creation
of the starting ensemble Ewas written in Matlab using a stan-
dard k-means implementation, and trivially parallelized over
4 cores on an Intel Core i7 with 8GB memory (more effi-
cient alternatives can be considered for this step). The main
consensus algorithm was implemented in C++. In Table 2
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we report the average time required to produce stable seg-
mentations on the TOSCA dataset, using different ensemble
sizes. We used the first 50 eigenfunctions of the LB operator
to compute GPS descriptors. The other parameters are set to
the default values of ku = 10 and k= 5.

m= 10 m= 25 m= 50 m= 75
build E 1.94 4.64 9.24 14.05
optimize 0.02 0.12 0.32 0.76

Table 2: Average times (sec) required by our algorithm on
shapes of 10k vertices.

5. Conclusions

We have proposed a novel region-based feature detector for
three-dimensional shapes, which can be regarded as a robust
alternative to the widespread point-based detectors. Our ap-
proach builds around the idea, imported from the consen-
sus clustering literature, that robust and stable segments can
be obtained by eliciting a consensus among a set of puta-
tive segmentations. We have indicated an effective ensemble
creation procedure together with a novel consensus segmen-
tation algorithm, which is made practical by a shift of the
clustering domain, from shape nodes to so-called base seg-
ments. A thorough quantitative evaluation of the proposed
solution on standard datasets demonstrates its effectiveness
compared to other state-of-the-art methods.
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